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Abstract 
This paper presents a methodology related to rapid and flexible prototyping of simulation 
models reflecting large-scale transportation logistic systems. This methodology is based on a 
proprietary architecture (called ABAsim) inspired by the paradigm of autonomous agents. 
The architecture was designed within the framework of research and development of an 
integrated computer environment, which is specialized for simulations of a wide class of 
transportation logistic systems.  
      Basic characteristics of the mentioned architecture are briefly described, whereas a 
flexibility of simulation models, developed within that architecture, is emphasised. The high 
degree of flexibility is enabled due to consistent hierarchical structure of relevant conceptual 
models and indirect addressing mechanism utilised for inter-agent communication. Because 
of the applied approaches, the simulation model configuration can be built by replacing 
relevant sub-models, individual agents or their internal components. In addition, exploitation 
of Petri nets for definitions of control procedures and utilisation of a proprietary CASE-tool 
also supports rapid and flexible model prototyping. 
      There is also presented a complex simulation tool Villon (developed within ABAsim 
architecture) and corresponding experience with its utilisation within simulations mirroring 
compound systems from the field of transportation logistics systems. 
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Key Words: Agent-Based Simulation, Simulation Model Architecture, Petri Nets, 

Simulation of Transportation Logistic Systems 
 
1.   INTRODUCTION 
 
There are many systems, the basic processes of which correspond to orders of various kinds 
of services and the realization of those services - such systems are called service systems. The 
realization of a service is usually related to further orders, i.e. the mentioned systems are 
strictly hierarchically oriented. The most complex service systems involve complicated 
transportation processes, which represent substantial portion of all studied processes (e.g. 
railway stations related to passenger or freight traffic, multimodal terminals etc.). Those 
systems are called transportation logistic systems. 
      Essential questions should be asked before we start building simulation model of a 
complex transportation logistic system. Are we able to create that model? Is that potential 
model flexible enough in order to carry out simulations following various scenarios or even 
reflecting different kinds of transportation logistic systems? Final success depends namely on 
an applied methodology and a kind of model architecture that has to include the following 
features and methodologies. 
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      Model designer should cooperate closely with technologists of a modelled system within 
the frame of all stages of simulation study. This cooperation is possible only on a level of 
conceptual model. So, the conceptual model structure should plausibly mirror the structure of 
modelled system. 
      Once the model (or its parts/components) is built, it should be utilised many times (also 
because of the costs of its development) within various stages of design, building, operation 
or maintenance of the modelled system. Therefore it is needed that the applied model 
architecture supports reusability of individual components and sub-models. In addition, the 
simulation model is supposed to be configured on a conceptual level, i.e. the model can be 
structured of ready-made sub-models (components) or it can be used replacing sub-models 
with rough granularity by sub-models applying more detailed granularity. These features are 
denoted as model flexibility. 
      The architecture ought to support non-procedural programming to minimise writing 
source codes. Non-procedural (declarative, graphical) parts of the simulation programme 
substantially increase its flexibility. Finally, an appropriate architecture should be supported 
by a CASE-tool for realisation of an effective model development.  
      Facing the challenge of developing software tool for simulation of transportation logistic 
systems, we have decided to base its development on proprietary agent-based simulation 
architecture, which provides the needed level of flexibility, manageability and extensibility 
(Section 2). Section 3 presents those features of a discussed architecture, which substantially 
support model flexibility. At the end (Section 4) we illustrate all described approaches and 
methodologies on the case of simulation model built within presented architecture and utilised 
for simulations of many complex transportation logistic systems in real applications. 
 
2.   AGENT-BASED ARCHITECTURE 
 
Architecture ABAsim (initially mentioned in [1] and elaborated in [2], [3], and [4]) was 
mainly developed for simulation of large service systems. A service system is understood to 
mean a system focused on an execution of orders (attending to customers) and the realization 
of services relating to them. These services can further initiate another set of orders. Such 
service systems include a wider class of various systems – e.g. factories, transportation and 
logistic nodes/junctions, hospitals, repair shops, etc. Natural and technical systems do not 
belong to this class. 
      Let us mention the most important features of service systems, features of which 
essentially influence the architectural properties:  
• Service system structures can be considered (from the point of view of order elaboration) 

strictly hierarchical. The order (the customer) entering the system (e.g. production of a 
car, treatment of a patient) initiates a recursive sequence of suborders, according to the 
rules of competence redistribution.  

• All system elements (subsystems) work in a synergic way, unlike the majority of natural 
systems, with the common goal of executing the order. Thus, the architecture cannot be 
expected to work with the processes of: evolution, competition, or parasitism. 

• The entities within a service system (orders/customers and resources) can be divided into 
specialized classes with the same behavioural rules for all included entities. This means 
that the responsibility for the behaviour of these entities is taken over by their superior 
subjects (agents). Hence, there is no reason to consider individual entities as agents.   

• Service systems usually represent large-scale systems. It is necessary in most cases to 
transfer service resources to the customer (or vice versa), in order to actualize the service 
activity. Frequent and complex transposition processes are typical within such systems.  
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2.1 Agent 
 
First let us remind the generally-respected agent definition [5]: Agent is an encapsulated 
computer system situated in some environment and capable of flexible, autonomous action in 
that environment in order to meet its design objectives, where the agent features are as 
follows: 
• Autonomy – i.e. an agent is able to work autonomously without exogenous interventions, 

entirely able to control its activities and inner status.  
• Social behaviour – this is made manifest by the agent’s interaction with other agents (or 

with human beings) by means of some communication mechanism or language. 
• Re-activeness – an agent responds to external influences from its surrounding.  
• Pro-activeness – an agent acts with initiative and goal-orientation. 
      In addition, the agent is potentially able to “improve” continuously its behaviour through 
the ability to learn. 
      The main agent functions in ABAsim architecture are described in Fig. 1. A given task or 
goal is assigned to each agent. The agent then realizes, according to its mission, its own life-
cycle: sensing – decision making – acting (within its life space) using the support of solving 
(focused on making solution proposals) and communicating with other agents (eventually 
with human operators). If the agent detects a problem or a situation beyond its delegated 
competence, it informs other agents about the need for a corresponding solution.  

 

 
 

Figure 1: The agent functions.  
 
2.2 Agent components 
 
Each agent can be decomposed into the following groups of internal components (Fig. 2): 
a) The first, control and decision making component (called the manager) is responsible for 

making decisions and for inter-agent communication. In addition, the manager represents 
the central agent component because it initiates the work of other internal components 
and can also communicate with all of them. 

b) The group of sensors is specialized for mining information from a state space. This group 
is composed of two kinds of components - the query delivers the required forms of 
information instantly, and the monitor scans the state space in some time interval and 
continuously brings important information to the manager. 
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c) The next group, called solvers, provides solutions for problems to the manager, which can 
accept them or asked for alternative ones. The advisor is a passive component able, by 
return, to react only to the manager’s requests for delivery of proposals for problem-solving.  
The typical advisor can be represented e.g. by optimization algorithm, neural network, 
fuzzy regulator or a human operator. On the other hand, the scheduler (focused on a 
restricted scope of problems) works continuously for the manager, on the basis of either a 
priori rosters or schedules, which have been created (e.g. connected with the allocation of 
resources), or by making its own dynamic forecast for a defined time interval. 

d) The last component group includes effectors (actuators), which make changes to system 
status after receiving corresponding instructions from the manager. No other agent 
components are allowed to make these changes. An action-component makes instant state 
changes (e.g. switch traffic lights, close a train’s doors), while a process-component (e.g. 
a crane’s movement) makes them continuously until its task is finished.  

 

 
Figure 2: Agent’s decomposition. 
 
      The effectors, sensors, and solvers are, for brevity, given the umbrella term of manager’s 
assistants, and can be further distinguished as:  
• Continual assistants, the activities of which fill up some interval in the simulation time 

(processes, monitors, and schedulers). 
• Instant assistants, which are active only in one instant of simulation time (actions, queries 

and advisors). 
      The question arises, how to realize appropriately the internal agent components. They can 
be described alternatively either  
• using imperative approach (implementation of program routines constructed in a given 

source code), or 
• by means of declarative forms (connected with some kind of symbolic formalism), which are 

reflected by a structured input data and “vitalized” by a corresponding interpreter. Petri nets 
[6] [7] represent one of the most effective formalisms appropriate for describing agent 
internal components.  

 
2.3 Community of agents and its structure  
 

Simulation models for simple real systems could be composed of only one agent; however, 
the simulation of complex service systems is obviously connected with a multi-agent 
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approach (e.g. mentioned in [5]), using the agents within some organizational structure. Let 
us remark that the philosophy of ABAsim architecture was also partly inspired by the 
paradigm of reactive agents [8], which is based on a society of reactive rather than proactive 
agents. The intelligence of such society emerges when one observes the whole community 
and not its separate members (individually of relatively low intelligence). 
      A multi-agent hierarchical system can be demonstrated through the following example 
(Fig. 3), where A0 (agent of service centres) divides the management of the relevant service 
company into two partial managements of affiliated service centres. We say that agent A0 
delimits the company management to two peer affiliate agents A1 and A2, which inform their 
boss about important facts concerning the entire company.  Agent A0 can also send important 
supra-affiliate information to its subordinates. 

 

 

Figure 3: Hierarchical organization of agents and models. 
 
      It is expected that both affiliates mentioned above carry out the same kind of management 
operations. Each of the affiliate agents further utilizes a set of subordinated specialized agents 
in order to fulfil its own defined tasks. This means, in fact, that affiliate agents delegate some 
portion of their competences to hierarchically lower-ranked colleagues. It is obvious from the 
above-mentioned figure that agent A1 utilizes a different structure of subordinates than its 
colleague A2 (it reflects specific needs of each affiliate). Another point of view is that a 
hierarchical structure of agents (set A) represents a hierarchical structure of models (set M, 
|M|=|A|), whereas each model Mi ∈ M, (Mi ⊆ A) is composed of a tree of agents with the 
root/agent Ai ∈ A, i=0,..., |A|-1.  The agent Ai is a representative (boss) of the whole model Mi 
− we can alternatively utilize the notation modelAi ≡ Mi. The models M1 and M2 represent sub-
models of model M0. The models on the lowest hierarchical level (the leaves) are always 
realized as one-agent models. Finally, it is possible to denote the structure of model M0 in the 
form of an algebraic expression: M0[M1(M3,M4,M5),M2(M6,M7(M8,M9))], where the pairs of 
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brackets encapsulate the models, which were created as an act of delimitation, and the pairs of 
parentheses encapsulate the models with delegated competences. 
      To summarize the philosophy of ABAsim operation: The control role is played by 
mutually communicating managers (supported by sensors and solvers), which initiate the 
activities of effectors at the correct time instants and under particular conditions. 
 
2.4 Communication mechanism 
 
One way to realize inter-agent communication is to use standard communication languages 
(e.g. KQML [10] or FIPA-ACL [11]). Another approach is to implement a customized 
communication mechanism able to reflect, in the best way, the features of the respective 
architecture.  
      Communication within ABAsim architecture is based on a simple, original mechanism 
applied to inter-agent and also intra-agent communications. As was already mentioned, inter-
agent communication is made by manager components, and intra-agent communications are 
realized between the managers and their assistants. Both kinds of ABAsim-communications 
utilize exclusively the paradigm of sending messages (from this viewpoint, ABAsim 
represents message-oriented architecture). 
      The following description simply characterizes selected kinds of messages used within 
ABAsim architecture. Notice–messages contain some information for the addressee without 
expecting any answer, Request–messages carry specific demands, which are expected to be 
satisfied or supplied by means of corresponding Response–messages. Continual assistants are 
initiated by Start–messages (sent by superior managers), whereas Finish–messages (sent by 
continual assistants) delivered to corresponding managers, indicate completion of an activity 
related to relevant continual assistant. In addition, managers exploit Execute–messages in 
order to obtain promptly required results from their inferior instant assistants. Finally, Hold–
messages exclusively mediate the augmentation of simulation time. They involve so-called 
time stamps, which define the durations of their deliveries (equal or greater than the current 
simulation time). The attributes sender and addressee contain the same values – i.e. the 
continual assistants send those messages to themselves with some time delay. Thus, after 
sending Hold–message, the continual assistant remains idle and resumes its activity after the 
message returns. We have to emphasize that the augmentation of the simulation time is 
realized exclusively by continual assistants, i.e. synchronization of simulation time is based 
on synchronization of these components.  
 
2.5 Run-time infrastructure 
 
The current implementation of ABAsim’s runtime infrastructure provides means for 
execution and synchronisation of discrete and combined discrete-continuous simulation 
models [12]. Runtime infrastructure is modular and comprises three different modules: 
discrete simulation module (main kernel module), continuous simulation module and 
animation module. Animation module provides basic support for animation of modelled 
discrete and continuous activities, utilizing the time-stepping approach.  
      The newest run-time infrastructure also supports execution of simulation models in 
distributed environment, synchronising distributed sub-models by means of proprietary 
developed hierarchical conservative synchronisation algorithm [4]. The set of basic services, 
which run-time infrastructure offers to simulation model designers, is supplemented by 
support for flexible message addressing and interpreter of Petri nets. 
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2.6 ABAsim versus other agent-based architectures 
 
Seeing that general paradigm of autonomous agents influenced the design and development of 
ABAsim architecture, it is only natural that the architecture shares some common principles 
with other agent based simulation architectures that were inspired by the same paradigm. 
Among many, we can mention for example Cougaar architecture [13] (with similar 
hierarchical organisation of agent communities or agent decomposition to simpler executive 
units) or architecture HIDES [14], which shares the same view on importance of hierarchical 
structure of agents reflecting modelled system and supports forming of agent communities 
responsible for specific tasks. 
      Since its beginning, ABAsim architecture was oriented to creation of simulation models 
of complex large-scale service systems, with emphasis on flexibility for simulation model 
designers, programmers as well as for end-users of simulation models.  
 
3.   FLEXIBILITY OF ABAsim ARCHITECTURE 
 
To be successful in application of ABAsim architecture, it is essential to enable fast and flexible 
prototyping of simulation models reflecting studied systems. The bellow mentioned features 
present applied approaches, methodologies and tools, which support those expectations. 
 
3.1 Hierarchical structure 
 
Management structure of service systems is typically hierarchical. Since we consider the 
hierarchy to be important premise for solutions leading to desired model flexibility, ABAsim 
architecture reflects the structure of management entities in hierarchical structure of model 
agents. Based on the strictly required hierarchical structure, model designers can enjoy 
following features: 
• Replacing any agent or sub-model with another agent or sub-model. This way designer can 

modify the management of respective sub-system – typical and often-utilized reason for 
such a change is the requirement to model the sub-system at more (or less) detailed level. 

• Merging of more sub-models (agent trees) to one, realised through adding a new boss 
agent responsible for coordination of merged sub-models. 

• Model configuration by selecting from library of reusable agents or sub-models. 
      Implementation of the flexible agent and sub-model configuration abilities is dependent 
on the existence of adequate inter-agent message addressing mechanism.    
 
3.2 Message addressing 
 
The modularity of a simulation model, as well as of individual agents, represents features, 
which highly support flexibility of a simulation model within ABAsim architecture. For 
example, if the structure of sub-model M1(M3,M4,M5), illustrated in Fig. 3, should be changed 
to M1(M3(M10,M11),M4,M5(M12,M13)); then, within other model parts, it may be necessary to 
modify the identifiers of the addressees (agents) hierarchically subordinated to M1. The 
reasons for changing a sub-model structure can be motivated e.g. by an additional decision to 
implement that sub-model on a more detailed level. In spite of that, simple standard message-
oriented communication mechanism will not enable such a level of flexibility, which would 
allow changes to a sub-model structure without the need to make additional changes within 
other model parts. Therefore, ABAsim architecture utilizes flexible message addressing 
system, which is exploiting hierarchical structure of models and is based on message-
processing registers. Each agent keeps two distinct message registers:  
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• a register of direct-messages, which holds messages, agent can directly process and 
• a register of mediated-messages, which contains messages that could be processed by 

agent’s subordinated agents. 
      The union of these registers gives the set of messages, which can be elaborated in agent’s 
model. Each inter-agent message can be send in following ways: 
• as a standard addressable message – in this case, the message addressee field is filled with 

the address of responsible agent, which can process the message (the message is listed in 
agent’s direct-messages register), 

• as a partially-addressable message – if the message is addressed to a sub-model 
(represented by the boss agent of the model; this will then, based on its mediated-messages 
register, determine the agent responsible for message elaboration, 

• as a non-addressable message – if the sending agent is unable or not willing (due to the 
flexibility requirements) to determine responsible agent or even sub-model, the message 
can be sent with empty addressee field. 

      If a non-addressable or partially-addressable message is to be delivered, then a special 
addressee searching algorithm, based on systematic hierarchical investigation of message 
registers, is automatically initiated by run-time infrastructure. Thus, it depends only on a 
model designer if he/she prohibits a selected sub-model from addressing its agents (except 
boss) – such a command enables the making of safer structural changes/modification to that 
sub-model. Total flexibility is reached only if non-addressable messages are allowed; 
however, this concept is connected with more time-consuming demands.  
 
3.3 Flexibility supported by Petri nets 
 
Petri nets represent (as already mentioned above) an appropriate formalism for design of logic 
related to selected agent components, namely managers. It means in fact that using the 
mentioned formalism enables rapid and flexible prototyping of relevant Petri nets, which are 
consequently involved into a simulation model based on ABAsim architecture. Let us adduce 
an intuitive illustrative example of coloured Petri net (Fig. 4) defining the logic of a manager 
component encapsulated by agent of resource control (A5) from the Fig. 3. Presented net 
disposes of two special places (p1, p14), where p1 (input place) accepts tokens/colours, which 
reflect incoming messages of studied agent and p14 (output place) receives tokens 
representing outgoing messages from that agent. The transitions denoted as a1, …, a7 
correspond to relevant instant assistants, which are respectively executed during the net 
evolution. Transitions s1 and s2 realise sending outgoing messages through the place p14. And 
finally, transitions d1, …, d4 represent points of conditional branching.  

So, we can claim that utilization of Petri nets within ABAsim architecture supports 
high degree of flexibility, because it is possible to make readily different alternative variants 
of agent components (within the frame of corresponding editor without the need to change the 
source code of simulation model). In addition, Petri nets can be properly analysed and 
verified before becoming a part of a simulator. 

 
3.4 CASE tool 
 
To ease the sometimes tedious task of creating complex simulation models based on the 
ABAsim architecture, computer aided software engineering (CASE) tool is provided for 
simulation model designers and programmers. The tool, named ABAbuilder, supports several 
aspects of model development including conceptual modelling, design of communication, 
model maintenance and re-engineering. ABAbuilder provides visual graphical environment 
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for the users to define hierarchical agent structure of the model, to design communication by 
definition of messages to be sent and processed by agents, to define components and edit Petri 
nets of model agents. As an output, the tool produces source code frames of the model in 
chosen programming language (currently only Object Pascal is supported), programmers then 
only fill-out executive commands of assistants. ABAbuilder supports re-engineering and 
model flexibility by its ability to analyse existing source code (not necessarily generated by 
ABAbuilder) and converts it to graphical representation, so users can adjust the model 
structure, exchange agent components, redefine Petri nets or modify other model properties in 
visual environment. 

 

 

 

Figure 4: Coloured Petri net reflecting a manager related to the agent of resource control.  
 

4.   APPLICATION OF THE ARCHITECTURE – SIMULATION TOOL 
VILLON 

 
The properties of ABAsim architecture made it possible to design and implement complex 
simulation tool for modelling of transportation logistic systems, called Villon [15] [16]. 
Simulation tool Villon allows users (professionals in the field of logistics) to create 
simulation models of logistic systems, to run prepared scenarios as well as to evaluate results 
of simulation runs,  without the need to write a single line of program code – utilizing only 
Villon’s user-friendly interface. The creation of complex simulation models of logistic 
systems, of course, requires a certain level of experience and knowledge, however, using the 
Villon simulation tool, even less experienced users are able to create simulation models of 
simple logistic systems within a short period of time (few days). 
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      Villon is a complete simulation system; it provides the user with comfortable user-
friendly editors to edit all needed data to run a simulation model, supports customisation of 
many aspects of simulation runs, offers animated output of modelled activities in 2D or 3D 
view (Fig. 5) as well as extensive set of post-run evaluation tools (including statistics, 
graphical protocols, etc.). 
      Even though the development of this tool was motivated by the ambition to create 
complex simulation model of a marshalling yard, nowadays Villon is able, thanks to the 
architecture flexibility and its other valuable properties, to support modelling of various types 
of logistic transportation nodes (e.g. railway passenger stations, train depots, factories 
including road transportation, ground handling within airports etc.). 
 

 

Figure 5: Simulator’s animation output using 3D visualisation.  
 
      Utilization of ABAsim architecture in the development of the tool gave programmers the 
possibility of comfortable modelling functionality augmentation of the tool (e.g. by adding 
more agents and sub-models to the existing model structure) without the need for extensive 
program code changes in existing parts of the tool. For example, programmers can simply add 
the support for another type of service resources (e.g. fork-lifters) by adding the responsible 
agent to the hierarchical structure. At present, Villon’s structure contains more than a dozen 
of agents responsible for various tasks, organised in a hierarchical manner. To mention only a 
few, there is Dispatcher agent, set of resource agents (infrastructure, locomotives and 
personnel), Movement agent, Crossings agent, Surroundings agent, etc. Even at present we 
are continuously improving Villon by adding more modules (agents and sub-models) and by 
modification of existing agents and their assistants. During the configuration of a simulation 
model, experimenter is able to specify modules that the model will  use, which leads to 
corresponding structure of agents (agents responsible for not requested functionality are not  
included in the model structure). 
      Features provided by the ABAsim architecture are not only used by programmers during 
development and implementation of the Villon tool, they are also mediated to Villon’s users 
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(who are usually not programmers). For example, the users have the chance to choose suitable 
algorithm for resource assignment. This is in Villon implementation translated as a 
substitution of advisor component of Resource Agent for another one (which implements 
alternative algorithm of resource assignment) from the pre-programmed palette of available 
advisors. If there is a need to alter agent’s behaviour in greater extent, the user has the 
possibility to modify the Petri net describing agent’s behaviour; however this task requires 
basic Petri net knowledge and certain algorithmic abilities. 
      Extensibility and flexibility of Villon tool even surpass the features directly offered by 
ABAsim architecture, however without the support from the architecture, these additional 
features would not be so easy to implement. Let us mention only one example: Since Villon 
has to support modelling of various logistic node types, it does not contain any hard-coded 
technological procedures – simply said, Villon itself is not able to perform any task without 
proper “program”, which is entered in a form of a flowchart by the user during creation of the 
model. Flowcharts are created in a comfortable graphical editor and are composed of 
activities, which are chosen from predefined set of activities known to Villon (these are 
prepared by programmers, e.g. loading, resource assignment, etc.). User has the chance to 
modify various parameters and resources needed for the activity to be executed (e.g. 
movement speed). Ready flowchart is then assigned to a customer (e.g. a train). During 
simulation run, specialised agent in Villon interprets defined flowcharts – each activity is 
simply translated to a message that is at a proper time (respecting the order and dependences 
between activities defined in the flowchart) sent to the agent, which carries out the activity. 
      Finally, we adduce some important applications for the mentioned simulator. It was 
applied within simulation studies, which paid attention mainly to the marshalling yards in 
Austria (Vienna, Linz), in Germany (Hamburg Alte Süderelbe, Oberhausen-Osterfeld), in 
Switzerland (Lausanne, Basel), and in China (Mudanjiang, Harbin). In addition, other types of 
railway and logistic centres were also modelled using this simulator – e.g. railway depot in 
Ulm (Germany), the factory sidings of the chemical plant BASF Ludwigshafen (Germany), 
the internal railway traffic of the paper producing company SCA Laakirchen (Austria) and 
steel production company Voest Alpine Linz (Austria), the passenger station of Beijing 
(China), the internal traffic of the car production company VW Bratislava (Slovakia), etc. 
 
5.   CONCLUSIONS 
 
On the basis of actual experience with the application of ABAsim architecture, we can 
emphasize namely its following advantages: 
• Simulation model structure is very close to the structure of a simulated system mainly from 

the point of view of the organization/hierarchy of the system control units. This feature is 
useful not only for model designers, but also for improvement of communication with 
customers.  

• Clear decomposition of the entire model enables to utilize and to reuse its sub-models, 
agents as well as its individual components. 

• Operator can be integrated into a simulation model in a very natural way – he/she can be 
understood either as an agent or as one of its components (advisory, sensorial, etc.).  

• It supports formation of versatile and flexible simulation models rather than single-purpose 
ones. It is natural to build bases/libraries of alternative components, agents, and models. It 
is viable to “mix” the required model version/alternative with the help of those predefined 
elements – which means that rapid configurations and scenario preparations are assisted. 
Thus, designer can easily modify (mostly because of the non-procedural ways of 
programming):  
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- executive properties of an agent (selecting from its effectors), 
- decision-supporting features (choosing from a set of sensors and solvers),  
- agent control strategies (using various agent “brains”, i.e. manager-components), 
- complex parts of simulation model (activating alternative agents and sub-models). 

• An experimenter can form model configurations and scenarios of experiments by means of 
editing tools, without the need to modify the code of a simulation program. 

• The concept of message-oriented architecture enables distributed simulations. 
      Having a long-term experience with practical application of the ABasim architecture, we 
are convinced that it pushes forward the complexity limit of transportation logistic systems, 
for which we are able to create flexible and maintainable simulation models. 
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