
Int j simul model 6 (2007) 1, 13-24
ISSN 1726-4529 Original scientific paper

SIMULATIONS OF TRANSPORTATION LOGISTIC

SYSTEMS UTILISING AGENT-BASED ARCHITECTURE

Kavicka, A.*; Klima, V.** & Adamko, N.**

*Jan Perner Transport Faculty, University of Pardubice, Studentska 95,
532 10 Pardubice, Czech Republic

**Faculty of Management Science and Informatics, University of Zilina, Univerzitna 8215/1,
010 26 Zilina, Slovak Republic

E-Mail: antonin.kavicka@upce.cz; valent.klima@fri.utc.sk; norbert.adamko@fri.utc.sk

Abstract
This paper presents a methodology related to rapid and flexible prototyping of simulation
models reflecting large-scale transportation logistic systems. This methodology is based on a
proprietary architecture (called ABAsim) inspired by the paradigm of autonomous agents.
The architecture was designed within the framework of research and development of an
integrated computer environment, which is specialized for simulations of a wide class of
transportation logistic systems.
 Basic characteristics of the mentioned architecture are briefly described, whereas a
flexibility of simulation models, developed within that architecture, is emphasised. The high
degree of flexibility is enabled due to consistent hierarchical structure of relevant conceptual
models and indirect addressing mechanism utilised for inter-agent communication. Because
of the applied approaches, the simulation model configuration can be built by replacing
relevant sub-models, individual agents or their internal components. In addition, exploitation
of Petri nets for definitions of control procedures and utilisation of a proprietary CASE-tool
also supports rapid and flexible model prototyping.
 There is also presented a complex simulation tool Villon (developed within ABAsim
architecture) and corresponding experience with its utilisation within simulations mirroring
compound systems from the field of transportation logistics systems.
(Received in May 2006, accepted in February 2007. This paper was with the authors 3 months for 2 revisions.)

Key Words: Agent-Based Simulation, Simulation Model Architecture, Petri Nets,

Simulation of Transportation Logistic Systems

1. INTRODUCTION

There are many systems, the basic processes of which correspond to orders of various kinds
of services and the realization of those services - such systems are called service systems. The
realization of a service is usually related to further orders, i.e. the mentioned systems are
strictly hierarchically oriented. The most complex service systems involve complicated
transportation processes, which represent substantial portion of all studied processes (e.g.
railway stations related to passenger or freight traffic, multimodal terminals etc.). Those
systems are called transportation logistic systems.
 Essential questions should be asked before we start building simulation model of a
complex transportation logistic system. Are we able to create that model? Is that potential
model flexible enough in order to carry out simulations following various scenarios or even
reflecting different kinds of transportation logistic systems? Final success depends namely on
an applied methodology and a kind of model architecture that has to include the following
features and methodologies.

DOI:10.2507/IJSIMM06(1)2.075 13

Kavicka, Klima, Adamko: Simulations of Transportation Logistic Systems Utilising Agent ...

 Model designer should cooperate closely with technologists of a modelled system within
the frame of all stages of simulation study. This cooperation is possible only on a level of
conceptual model. So, the conceptual model structure should plausibly mirror the structure of
modelled system.
 Once the model (or its parts/components) is built, it should be utilised many times (also
because of the costs of its development) within various stages of design, building, operation
or maintenance of the modelled system. Therefore it is needed that the applied model
architecture supports reusability of individual components and sub-models. In addition, the
simulation model is supposed to be configured on a conceptual level, i.e. the model can be
structured of ready-made sub-models (components) or it can be used replacing sub-models
with rough granularity by sub-models applying more detailed granularity. These features are
denoted as model flexibility.
 The architecture ought to support non-procedural programming to minimise writing
source codes. Non-procedural (declarative, graphical) parts of the simulation programme
substantially increase its flexibility. Finally, an appropriate architecture should be supported
by a CASE-tool for realisation of an effective model development.
 Facing the challenge of developing software tool for simulation of transportation logistic
systems, we have decided to base its development on proprietary agent-based simulation
architecture, which provides the needed level of flexibility, manageability and extensibility
(Section 2). Section 3 presents those features of a discussed architecture, which substantially
support model flexibility. At the end (Section 4) we illustrate all described approaches and
methodologies on the case of simulation model built within presented architecture and utilised
for simulations of many complex transportation logistic systems in real applications.

2. AGENT-BASED ARCHITECTURE

Architecture ABAsim (initially mentioned in [1] and elaborated in [2], [3], and [4]) was
mainly developed for simulation of large service systems. A service system is understood to
mean a system focused on an execution of orders (attending to customers) and the realization
of services relating to them. These services can further initiate another set of orders. Such
service systems include a wider class of various systems – e.g. factories, transportation and
logistic nodes/junctions, hospitals, repair shops, etc. Natural and technical systems do not
belong to this class.
 Let us mention the most important features of service systems, features of which
essentially influence the architectural properties:
• Service system structures can be considered (from the point of view of order elaboration)

strictly hierarchical. The order (the customer) entering the system (e.g. production of a
car, treatment of a patient) initiates a recursive sequence of suborders, according to the
rules of competence redistribution.

• All system elements (subsystems) work in a synergic way, unlike the majority of natural
systems, with the common goal of executing the order. Thus, the architecture cannot be
expected to work with the processes of: evolution, competition, or parasitism.

• The entities within a service system (orders/customers and resources) can be divided into
specialized classes with the same behavioural rules for all included entities. This means
that the responsibility for the behaviour of these entities is taken over by their superior
subjects (agents). Hence, there is no reason to consider individual entities as agents.

• Service systems usually represent large-scale systems. It is necessary in most cases to
transfer service resources to the customer (or vice versa), in order to actualize the service
activity. Frequent and complex transposition processes are typical within such systems.

14

Kavicka, Klima, Adamko: Simulations of Transportation Logistic Systems Utilising Agent ...

2.1 Agent

First let us remind the generally-respected agent definition [5]: Agent is an encapsulated
computer system situated in some environment and capable of flexible, autonomous action in
that environment in order to meet its design objectives, where the agent features are as
follows:
• Autonomy – i.e. an agent is able to work autonomously without exogenous interventions,

entirely able to control its activities and inner status.
• Social behaviour – this is made manifest by the agent’s interaction with other agents (or

with human beings) by means of some communication mechanism or language.
• Re-activeness – an agent responds to external influences from its surrounding.
• Pro-activeness – an agent acts with initiative and goal-orientation.
 In addition, the agent is potentially able to “improve” continuously its behaviour through
the ability to learn.
 The main agent functions in ABAsim architecture are described in Fig. 1. A given task or
goal is assigned to each agent. The agent then realizes, according to its mission, its own life-
cycle: sensing – decision making – acting (within its life space) using the support of solving
(focused on making solution proposals) and communicating with other agents (eventually
with human operators). If the agent detects a problem or a situation beyond its delegated
competence, it informs other agents about the need for a corresponding solution.

Figure 1: The agent functions.

2.2 Agent components

Each agent can be decomposed into the following groups of internal components (Fig. 2):
a) The first, control and decision making component (called the manager) is responsible for

making decisions and for inter-agent communication. In addition, the manager represents
the central agent component because it initiates the work of other internal components
and can also communicate with all of them.

b) The group of sensors is specialized for mining information from a state space. This group
is composed of two kinds of components - the query delivers the required forms of
information instantly, and the monitor scans the state space in some time interval and
continuously brings important information to the manager.

15

Kavicka, Klima, Adamko: Simulations of Transportation Logistic Systems Utilising Agent ...

c) The next group, called solvers, provides solutions for problems to the manager, which can
accept them or asked for alternative ones. The advisor is a passive component able, by
return, to react only to the manager’s requests for delivery of proposals for problem-solving.
The typical advisor can be represented e.g. by optimization algorithm, neural network,
fuzzy regulator or a human operator. On the other hand, the scheduler (focused on a
restricted scope of problems) works continuously for the manager, on the basis of either a
priori rosters or schedules, which have been created (e.g. connected with the allocation of
resources), or by making its own dynamic forecast for a defined time interval.

d) The last component group includes effectors (actuators), which make changes to system
status after receiving corresponding instructions from the manager. No other agent
components are allowed to make these changes. An action-component makes instant state
changes (e.g. switch traffic lights, close a train’s doors), while a process-component (e.g.
a crane’s movement) makes them continuously until its task is finished.

Figure 2: Agent’s decomposition.

 The effectors, sensors, and solvers are, for brevity, given the umbrella term of manager’s
assistants, and can be further distinguished as:
• Continual assistants, the activities of which fill up some interval in the simulation time

(processes, monitors, and schedulers).
• Instant assistants, which are active only in one instant of simulation time (actions, queries

and advisors).
 The question arises, how to realize appropriately the internal agent components. They can
be described alternatively either
• using imperative approach (implementation of program routines constructed in a given

source code), or
• by means of declarative forms (connected with some kind of symbolic formalism), which are

reflected by a structured input data and “vitalized” by a corresponding interpreter. Petri nets
[6] [7] represent one of the most effective formalisms appropriate for describing agent
internal components.

2.3 Community of agents and its structure

Simulation models for simple real systems could be composed of only one agent; however,
the simulation of complex service systems is obviously connected with a multi-agent

16

Kavicka, Klima, Adamko: Simulations of Transportation Logistic Systems Utilising Agent ...

approach (e.g. mentioned in [5]), using the agents within some organizational structure. Let
us remark that the philosophy of ABAsim architecture was also partly inspired by the
paradigm of reactive agents [8], which is based on a society of reactive rather than proactive
agents. The intelligence of such society emerges when one observes the whole community
and not its separate members (individually of relatively low intelligence).
 A multi-agent hierarchical system can be demonstrated through the following example
(Fig. 3), where A0 (agent of service centres) divides the management of the relevant service
company into two partial managements of affiliated service centres. We say that agent A0
delimits the company management to two peer affiliate agents A1 and A2, which inform their
boss about important facts concerning the entire company. Agent A0 can also send important
supra-affiliate information to its subordinates.

Figure 3: Hierarchical organization of agents and models.

 It is expected that both affiliates mentioned above carry out the same kind of management
operations. Each of the affiliate agents further utilizes a set of subordinated specialized agents
in order to fulfil its own defined tasks. This means, in fact, that affiliate agents delegate some
portion of their competences to hierarchically lower-ranked colleagues. It is obvious from the
above-mentioned figure that agent A1 utilizes a different structure of subordinates than its
colleague A2 (it reflects specific needs of each affiliate). Another point of view is that a
hierarchical structure of agents (set A) represents a hierarchical structure of models (set M,
|M|=|A|), whereas each model Mi ∈ M, (Mi ⊆ A) is composed of a tree of agents with the
root/agent Ai ∈ A, i=0,..., |A|-1. The agent Ai is a representative (boss) of the whole model Mi
− we can alternatively utilize the notation modelAi ≡ Mi. The models M1 and M2 represent sub-
models of model M0. The models on the lowest hierarchical level (the leaves) are always
realized as one-agent models. Finally, it is possible to denote the structure of model M0 in the
form of an algebraic expression: M0[M1(M3,M4,M5),M2(M6,M7(M8,M9))], where the pairs of

17

Kavicka, Klima, Adamko: Simulations of Transportation Logistic Systems Utilising Agent ...

brackets encapsulate the models, which were created as an act of delimitation, and the pairs of
parentheses encapsulate the models with delegated competences.
 To summarize the philosophy of ABAsim operation: The control role is played by
mutually communicating managers (supported by sensors and solvers), which initiate the
activities of effectors at the correct time instants and under particular conditions.

2.4 Communication mechanism

One way to realize inter-agent communication is to use standard communication languages
(e.g. KQML [10] or FIPA-ACL [11]). Another approach is to implement a customized
communication mechanism able to reflect, in the best way, the features of the respective
architecture.
 Communication within ABAsim architecture is based on a simple, original mechanism
applied to inter-agent and also intra-agent communications. As was already mentioned, inter-
agent communication is made by manager components, and intra-agent communications are
realized between the managers and their assistants. Both kinds of ABAsim-communications
utilize exclusively the paradigm of sending messages (from this viewpoint, ABAsim
represents message-oriented architecture).
 The following description simply characterizes selected kinds of messages used within
ABAsim architecture. Notice–messages contain some information for the addressee without
expecting any answer, Request–messages carry specific demands, which are expected to be
satisfied or supplied by means of corresponding Response–messages. Continual assistants are
initiated by Start–messages (sent by superior managers), whereas Finish–messages (sent by
continual assistants) delivered to corresponding managers, indicate completion of an activity
related to relevant continual assistant. In addition, managers exploit Execute–messages in
order to obtain promptly required results from their inferior instant assistants. Finally, Hold–
messages exclusively mediate the augmentation of simulation time. They involve so-called
time stamps, which define the durations of their deliveries (equal or greater than the current
simulation time). The attributes sender and addressee contain the same values – i.e. the
continual assistants send those messages to themselves with some time delay. Thus, after
sending Hold–message, the continual assistant remains idle and resumes its activity after the
message returns. We have to emphasize that the augmentation of the simulation time is
realized exclusively by continual assistants, i.e. synchronization of simulation time is based
on synchronization of these components.

2.5 Run-time infrastructure

The current implementation of ABAsim’s runtime infrastructure provides means for
execution and synchronisation of discrete and combined discrete-continuous simulation
models [12]. Runtime infrastructure is modular and comprises three different modules:
discrete simulation module (main kernel module), continuous simulation module and
animation module. Animation module provides basic support for animation of modelled
discrete and continuous activities, utilizing the time-stepping approach.
 The newest run-time infrastructure also supports execution of simulation models in
distributed environment, synchronising distributed sub-models by means of proprietary
developed hierarchical conservative synchronisation algorithm [4]. The set of basic services,
which run-time infrastructure offers to simulation model designers, is supplemented by
support for flexible message addressing and interpreter of Petri nets.

18

Kavicka, Klima, Adamko: Simulations of Transportation Logistic Systems Utilising Agent ...

2.6 ABAsim versus other agent-based architectures

Seeing that general paradigm of autonomous agents influenced the design and development of
ABAsim architecture, it is only natural that the architecture shares some common principles
with other agent based simulation architectures that were inspired by the same paradigm.
Among many, we can mention for example Cougaar architecture [13] (with similar
hierarchical organisation of agent communities or agent decomposition to simpler executive
units) or architecture HIDES [14], which shares the same view on importance of hierarchical
structure of agents reflecting modelled system and supports forming of agent communities
responsible for specific tasks.
 Since its beginning, ABAsim architecture was oriented to creation of simulation models
of complex large-scale service systems, with emphasis on flexibility for simulation model
designers, programmers as well as for end-users of simulation models.

3. FLEXIBILITY OF ABAsim ARCHITECTURE

To be successful in application of ABAsim architecture, it is essential to enable fast and flexible
prototyping of simulation models reflecting studied systems. The bellow mentioned features
present applied approaches, methodologies and tools, which support those expectations.

3.1 Hierarchical structure

Management structure of service systems is typically hierarchical. Since we consider the
hierarchy to be important premise for solutions leading to desired model flexibility, ABAsim
architecture reflects the structure of management entities in hierarchical structure of model
agents. Based on the strictly required hierarchical structure, model designers can enjoy
following features:
• Replacing any agent or sub-model with another agent or sub-model. This way designer can

modify the management of respective sub-system – typical and often-utilized reason for
such a change is the requirement to model the sub-system at more (or less) detailed level.

• Merging of more sub-models (agent trees) to one, realised through adding a new boss
agent responsible for coordination of merged sub-models.

• Model configuration by selecting from library of reusable agents or sub-models.
 Implementation of the flexible agent and sub-model configuration abilities is dependent
on the existence of adequate inter-agent message addressing mechanism.

3.2 Message addressing

The modularity of a simulation model, as well as of individual agents, represents features,
which highly support flexibility of a simulation model within ABAsim architecture. For
example, if the structure of sub-model M1(M3,M4,M5), illustrated in Fig. 3, should be changed
to M1(M3(M10,M11),M4,M5(M12,M13)); then, within other model parts, it may be necessary to
modify the identifiers of the addressees (agents) hierarchically subordinated to M1. The
reasons for changing a sub-model structure can be motivated e.g. by an additional decision to
implement that sub-model on a more detailed level. In spite of that, simple standard message-
oriented communication mechanism will not enable such a level of flexibility, which would
allow changes to a sub-model structure without the need to make additional changes within
other model parts. Therefore, ABAsim architecture utilizes flexible message addressing
system, which is exploiting hierarchical structure of models and is based on message-
processing registers. Each agent keeps two distinct message registers:

19

Kavicka, Klima, Adamko: Simulations of Transportation Logistic Systems Utilising Agent ...

• a register of direct-messages, which holds messages, agent can directly process and
• a register of mediated-messages, which contains messages that could be processed by

agent’s subordinated agents.
 The union of these registers gives the set of messages, which can be elaborated in agent’s
model. Each inter-agent message can be send in following ways:
• as a standard addressable message – in this case, the message addressee field is filled with

the address of responsible agent, which can process the message (the message is listed in
agent’s direct-messages register),

• as a partially-addressable message – if the message is addressed to a sub-model
(represented by the boss agent of the model; this will then, based on its mediated-messages
register, determine the agent responsible for message elaboration,

• as a non-addressable message – if the sending agent is unable or not willing (due to the
flexibility requirements) to determine responsible agent or even sub-model, the message
can be sent with empty addressee field.

 If a non-addressable or partially-addressable message is to be delivered, then a special
addressee searching algorithm, based on systematic hierarchical investigation of message
registers, is automatically initiated by run-time infrastructure. Thus, it depends only on a
model designer if he/she prohibits a selected sub-model from addressing its agents (except
boss) – such a command enables the making of safer structural changes/modification to that
sub-model. Total flexibility is reached only if non-addressable messages are allowed;
however, this concept is connected with more time-consuming demands.

3.3 Flexibility supported by Petri nets

Petri nets represent (as already mentioned above) an appropriate formalism for design of logic
related to selected agent components, namely managers. It means in fact that using the
mentioned formalism enables rapid and flexible prototyping of relevant Petri nets, which are
consequently involved into a simulation model based on ABAsim architecture. Let us adduce
an intuitive illustrative example of coloured Petri net (Fig. 4) defining the logic of a manager
component encapsulated by agent of resource control (A5) from the Fig. 3. Presented net
disposes of two special places (p1, p14), where p1 (input place) accepts tokens/colours, which
reflect incoming messages of studied agent and p14 (output place) receives tokens
representing outgoing messages from that agent. The transitions denoted as a1, …, a7
correspond to relevant instant assistants, which are respectively executed during the net
evolution. Transitions s1 and s2 realise sending outgoing messages through the place p14. And
finally, transitions d1, …, d4 represent points of conditional branching.

So, we can claim that utilization of Petri nets within ABAsim architecture supports
high degree of flexibility, because it is possible to make readily different alternative variants
of agent components (within the frame of corresponding editor without the need to change the
source code of simulation model). In addition, Petri nets can be properly analysed and
verified before becoming a part of a simulator.

3.4 CASE tool

To ease the sometimes tedious task of creating complex simulation models based on the
ABAsim architecture, computer aided software engineering (CASE) tool is provided for
simulation model designers and programmers. The tool, named ABAbuilder, supports several
aspects of model development including conceptual modelling, design of communication,
model maintenance and re-engineering. ABAbuilder provides visual graphical environment

20

Kavicka, Klima, Adamko: Simulations of Transportation Logistic Systems Utilising Agent ...

for the users to define hierarchical agent structure of the model, to design communication by
definition of messages to be sent and processed by agents, to define components and edit Petri
nets of model agents. As an output, the tool produces source code frames of the model in
chosen programming language (currently only Object Pascal is supported), programmers then
only fill-out executive commands of assistants. ABAbuilder supports re-engineering and
model flexibility by its ability to analyse existing source code (not necessarily generated by
ABAbuilder) and converts it to graphical representation, so users can adjust the model
structure, exchange agent components, redefine Petri nets or modify other model properties in
visual environment.

Figure 4: Coloured Petri net reflecting a manager related to the agent of resource control.

4. APPLICATION OF THE ARCHITECTURE – SIMULATION TOOL
VILLON

The properties of ABAsim architecture made it possible to design and implement complex
simulation tool for modelling of transportation logistic systems, called Villon [15] [16].
Simulation tool Villon allows users (professionals in the field of logistics) to create
simulation models of logistic systems, to run prepared scenarios as well as to evaluate results
of simulation runs, without the need to write a single line of program code – utilizing only
Villon’s user-friendly interface. The creation of complex simulation models of logistic
systems, of course, requires a certain level of experience and knowledge, however, using the
Villon simulation tool, even less experienced users are able to create simulation models of
simple logistic systems within a short period of time (few days).

21

Kavicka, Klima, Adamko: Simulations of Transportation Logistic Systems Utilising Agent ...

 Villon is a complete simulation system; it provides the user with comfortable user-
friendly editors to edit all needed data to run a simulation model, supports customisation of
many aspects of simulation runs, offers animated output of modelled activities in 2D or 3D
view (Fig. 5) as well as extensive set of post-run evaluation tools (including statistics,
graphical protocols, etc.).
 Even though the development of this tool was motivated by the ambition to create
complex simulation model of a marshalling yard, nowadays Villon is able, thanks to the
architecture flexibility and its other valuable properties, to support modelling of various types
of logistic transportation nodes (e.g. railway passenger stations, train depots, factories
including road transportation, ground handling within airports etc.).

Figure 5: Simulator’s animation output using 3D visualisation.

 Utilization of ABAsim architecture in the development of the tool gave programmers the
possibility of comfortable modelling functionality augmentation of the tool (e.g. by adding
more agents and sub-models to the existing model structure) without the need for extensive
program code changes in existing parts of the tool. For example, programmers can simply add
the support for another type of service resources (e.g. fork-lifters) by adding the responsible
agent to the hierarchical structure. At present, Villon’s structure contains more than a dozen
of agents responsible for various tasks, organised in a hierarchical manner. To mention only a
few, there is Dispatcher agent, set of resource agents (infrastructure, locomotives and
personnel), Movement agent, Crossings agent, Surroundings agent, etc. Even at present we
are continuously improving Villon by adding more modules (agents and sub-models) and by
modification of existing agents and their assistants. During the configuration of a simulation
model, experimenter is able to specify modules that the model will use, which leads to
corresponding structure of agents (agents responsible for not requested functionality are not
included in the model structure).
 Features provided by the ABAsim architecture are not only used by programmers during
development and implementation of the Villon tool, they are also mediated to Villon’s users

22

Kavicka, Klima, Adamko: Simulations of Transportation Logistic Systems Utilising Agent ...

(who are usually not programmers). For example, the users have the chance to choose suitable
algorithm for resource assignment. This is in Villon implementation translated as a
substitution of advisor component of Resource Agent for another one (which implements
alternative algorithm of resource assignment) from the pre-programmed palette of available
advisors. If there is a need to alter agent’s behaviour in greater extent, the user has the
possibility to modify the Petri net describing agent’s behaviour; however this task requires
basic Petri net knowledge and certain algorithmic abilities.
 Extensibility and flexibility of Villon tool even surpass the features directly offered by
ABAsim architecture, however without the support from the architecture, these additional
features would not be so easy to implement. Let us mention only one example: Since Villon
has to support modelling of various logistic node types, it does not contain any hard-coded
technological procedures – simply said, Villon itself is not able to perform any task without
proper “program”, which is entered in a form of a flowchart by the user during creation of the
model. Flowcharts are created in a comfortable graphical editor and are composed of
activities, which are chosen from predefined set of activities known to Villon (these are
prepared by programmers, e.g. loading, resource assignment, etc.). User has the chance to
modify various parameters and resources needed for the activity to be executed (e.g.
movement speed). Ready flowchart is then assigned to a customer (e.g. a train). During
simulation run, specialised agent in Villon interprets defined flowcharts – each activity is
simply translated to a message that is at a proper time (respecting the order and dependences
between activities defined in the flowchart) sent to the agent, which carries out the activity.
 Finally, we adduce some important applications for the mentioned simulator. It was
applied within simulation studies, which paid attention mainly to the marshalling yards in
Austria (Vienna, Linz), in Germany (Hamburg Alte Süderelbe, Oberhausen-Osterfeld), in
Switzerland (Lausanne, Basel), and in China (Mudanjiang, Harbin). In addition, other types of
railway and logistic centres were also modelled using this simulator – e.g. railway depot in
Ulm (Germany), the factory sidings of the chemical plant BASF Ludwigshafen (Germany),
the internal railway traffic of the paper producing company SCA Laakirchen (Austria) and
steel production company Voest Alpine Linz (Austria), the passenger station of Beijing
(China), the internal traffic of the car production company VW Bratislava (Slovakia), etc.

5. CONCLUSIONS

On the basis of actual experience with the application of ABAsim architecture, we can
emphasize namely its following advantages:
• Simulation model structure is very close to the structure of a simulated system mainly from

the point of view of the organization/hierarchy of the system control units. This feature is
useful not only for model designers, but also for improvement of communication with
customers.

• Clear decomposition of the entire model enables to utilize and to reuse its sub-models,
agents as well as its individual components.

• Operator can be integrated into a simulation model in a very natural way – he/she can be
understood either as an agent or as one of its components (advisory, sensorial, etc.).

• It supports formation of versatile and flexible simulation models rather than single-purpose
ones. It is natural to build bases/libraries of alternative components, agents, and models. It
is viable to “mix” the required model version/alternative with the help of those predefined
elements – which means that rapid configurations and scenario preparations are assisted.
Thus, designer can easily modify (mostly because of the non-procedural ways of
programming):

23

Kavicka, Klima, Adamko: Simulations of Transportation Logistic Systems Utilising Agent ...

- executive properties of an agent (selecting from its effectors),
- decision-supporting features (choosing from a set of sensors and solvers),
- agent control strategies (using various agent “brains”, i.e. manager-components),
- complex parts of simulation model (activating alternative agents and sub-models).

• An experimenter can form model configurations and scenarios of experiments by means of
editing tools, without the need to modify the code of a simulation program.

• The concept of message-oriented architecture enables distributed simulations.
 Having a long-term experience with practical application of the ABasim architecture, we
are convinced that it pushes forward the complexity limit of transportation logistic systems,
for which we are able to create flexible and maintainable simulation models.

6. ACKNOWLEDGEMENT

This work has been supported by the Czech National research program under project MSM
0021627505 "Theory of transportation systems" and by the grant of Slovak Ministry of
Education VEGA 1/4057/07 “Agent-oriented models of service systems”.

REFERENCES

[1] Klima, V.; Kavička, A. (1996). Agent-based simulation model design, Proceedings of European
simulation multiconference, SCS, 254-258

[2] Kavička, A.; Klima, V. (2006). Agent-based simulations of transportation nodes - methodology
and applications (invited paper), Proceedings of 40th Spring international conference Modelling
and simulation of systems - MOSIS ’06, Czech and Slovak Simulation Society, 9-20

[3] Kavička, A.; Klima, V. (2005). ABAsim: Agent-Based Architecture of Simulation Models,
Šnorek, M.; Štefan, J. (Editors), Simulation Almanac, Czech and Slovak Simulation Soc., 63-72

[4] Adamko, N.; Klima, V. (2005). Distributed Agent Based Simulation Architecture with
Hierarchical Time Synchronisation, Proceedings of ESM conference, Eurosis, 123-127

[5] Jennings, N. R. (2001). An agent-based approach for building complex software systems,
Communications of the ACM, Vol. 44, No. 4, 35-41

[6] Girault, C.; Valk, R. (2002). Petri Nets for Systems Engineering, Springer Verlag, Berlin
[7] Jensen, K. (1997). Coloured Petri nets – basic concepts, Springer Verlag, Berlin
[8] Brooks, R. (1991). Intelligence without representation, Artificial Intelligence J., No. 47, 139-159
[9] Maes, P. (1990). Designing Autonomous Agents: Theory and Practice from Biology to

Engineering and Back, MIT Press, Cambridge
[10] Finin, T.; Labrou, Y.; Mayfield, J. (1997). KQML as an agent communication language,

Bradshaw, J. (Editor), Software Agents, MIT Press, Cambridge, 291-316
[11] Foundation for intelligent physical agents. FIPA ACL message representation, from

http://www.fipa.org/specs/fipa00070/XC00070G.html, accessed on 17-05-2006
[12] Kavička, A.; Klima, V.; Adamko, N.; Fabian, P. (1996). System for combined simulations,

Proceedings of European Simulation Symposium & Exhibition - ESS ’96, SCS, 240-244
[13] Helsinger, A.; Thome, M.; Wright, T.: Cougaar: A Scalable, Distributed Multi-Agent

Architecture, from http://cougaar.org/docman/view.php/17/136/cougaar-bbn-0617-
submitted.pdf, accessed on 20-06-2005

[14] Henoch, J.; Ulrich, H.: HIDES: Towards an Agent-Based Simulator, from
http://www.ifor.math.ethz.ch/publications/2000_towardsagentbasedsimulator.pdf, accessed on
11-03-2005

[15] Kavička, A.; Klima, V.; Niederkofler, A.; Zaťko, M. (1999). Simulation model of marshalling
yard Linz Vbf (Austria), Proceedings of The international workshop on Harbour, Maritime &
Logistics Modelling and Simulation, SCS, 317-320

[16] Kavička, A., Klima, V., Adamko, N. (2006). Analysis and optimization of railway nodes using
simulation techniques, Proceedings of COMPRAIL 2006 conference, WIT-Press, 663-672

24

http://www.cs.umbc.edu/agents/introduction/kqmlacl.ps

	1. INTRODUCTION
	2. AGENT-BASED ARCHITECTURE
	2.1 Agent
	2.2 Agent components
	2.3 Community of agents and its structure
	2.4 Communication mechanism
	2.5 Run-time infrastructure
	2.6 ABAsim versus other agent-based architectures

	3. FLEXIBILITY OF ABAsim ARCHITECTURE
	3.1 Hierarchical structure
	3.2 Message addressing
	3.3 Flexibility supported by Petri nets
	3.4 CASE tool

	4. APPLICATION OF THE ARCHITECTURE – SIMULATION TOOL VILLON
	5. CONCLUSIONS
	REFERENCES

