
Int j simul model 6 (2007) 3, 165-172
ISSN 1726-4529 Professional paper

INTEGRATION OF SIMULATION SOFTWARE ARENA

WITH FMS CONTROL SYSTEM

Slota, A. & Malopolski, W.
Cracow University of Technology, Production Engineering Institute,

Al. Jana Pawla II 37, 31-864 Cracow, Poland
E-Mail: slota@mech.pk.edu.pl; malopolski@ mech.pk.edu.pl

Abstract
Simulation software enables to build and process FMS models to analyse different aspects of
the system operation. Such models, verified in simulation experiments, are ready to be used
for FMS control to calculate control decisions. The idea of using simulation software Arena to
control FMS is presented in the paper. Basic characteristic of modelling and simulation in
Arena is presented. Arena real time module, which enables communication with external
applications when the model is processed, is characterized. Required configuration options for
Arena and the model are presented. To integrate Arena with local controllers of the FMS a
computer program is designed. The proposed solution is implemented and verified for a real
system.
(Extended paper from the 17th International DAAAM Symposium, Vienna, Austria, 8-11 November 2006.)

Key Words: Modelling, Simulation, FMS Control

1. INTRODUCTION

Rapid development of highly automated machine tools, especially in the area of control, gives
an opportunity to build truly Flexible Manufacturing Systems (FMS). Such systems are
designed for time and cost effective manufacturing products in small batches. Products may
be processed in FMS according alternative routes. During FMS operation the production
undergoes changes: new products and new variants of products are introduced, production
capacity fluctuates. Some unexpected events may also occur – machines may become
temporarily unavailable because of a failure, new machines may be added to replace
unavailable ones or to extend system capabilities [1]. Such events, referred to as disturbances,
may substantially affect effectiveness of the system [2]. When a disturbance occurs its impact
should be assessed and, if it is necessary, new control policies ought to be worked out and
proved correct before changes are incorporated into the real systems.
 Due to complex structure and dynamic character of real manufacturing systems the way
the FMS works is often analysed with the use of simulation techniques. Though simulation
does not provide full insight into the system operation, like analytical analysis does, it is used
to verify system’s behaviour under different conditions. Simulation is used in the areas of
FMS design and reconfiguration [3], scheduling [4, 5, 6] and performance evaluation [7, 8].
Simulation is an execution of a virtual process which corresponds to operation of the real
system under defined conditions. Data crucial for analysis of FMS operation are included in
the model which is processed during simulation experiment. Time necessary to run a
computer simulation experiment depends on the complexity of the model, effectiveness of
simulation software and computer hardware and the horizon of simulation experiment. Thus
performance of different control strategies, taking into account operation condition (varying
production volume, level of disturbances), may be quickly explored to find the one which is
acceptable.

DOI:10.2507/IJSIMM06(3)3.088 165

Slota, Malopolski: Integration of Simulation Software Arena with FMS Control System

 For FMS control some kind of a mathematical model of the system is also required. Such
model, processed in real time, is used to calculate control decisions. In this case the model
evolves along with changes in the real system. This is done by exchanging messages between
the control software processing the model and local controllers of the system. Thus it comes
natural, in the first step, to make use of the model proved to be correct in simulation for
control of a real system. The second step is to use simulation software, which processes the
model during simulation, for processing the same model during control. The above goals may
be accomplished by building user simulation-control software [9, 10, 11]. Such solutions
require great amount of work to design, develop, test and implement software which, in most
cases, is designed for a given system and their limited openness and flexibility makes it
difficult to apply them to other systems. Available commercial simulation packages are listed
and characterized in [12][12]. Some simulation packages have built in mechanisms for
integration with external applications, which may be used for communication between
simulation software and local controllers of FMS. The authors decided to work out and
implement FMS operational control with the use of Rockwell simulation software Arena.

2. ARENA SOFTWARE

2.1 Modelling and simulation

Arena simulation software is a tool for modelling and simulation discrete event systems [13].
It provides an intuitive environment for model creation. The model consists of two types of
modules: Flowchart modules and Data modules. Flowchart modules are placed in the model
window. Connections between these modules describe the logic of the process and define
entities flow between modules. Data modules are presented in the form of a spreadsheet. They
are used to supplement the model with quantitative data crucial for simulation like
process/transport times, resource requirements, processes’ schedules, etc. Defined models are
recorded with the use of SIMAN language [14] and then simulated. After simulation reports
on different criteria (such as: usage of resources, length and waiting time in queues, time
entities spend in system) are generated to assess operation of the system. Arena’s additional
applications help to define input data for simulation (Input Analyzer), to manage different
model configurations (Process Analyzer), to analysis of simulation results (Output Analyser)
and to find optimal model configuration (OptQuest).

2.2 ARENA Real Time mode

Arena real time (RT) mode allows a model to be run in execution mode. In this case Arena
coordinates processing of the model with real-world processes by exchanging messages with
an external application. This feature may be used for monitoring and control of real systems
[13]. To run Arena in execution mode the model has to include definitions of messages which
are to be sent by Arena to external processes. Data and format of messages are defined by
TASKS elements. If a message should be sent to external process when an entity enters a
module, expression defining TASKID has to be entered for velocity or duration field. The
format is TASKID (Value, TaskID), where Value defines duration or velocity for simulation
purposes and TaskID points which TASKS element defines data and format of the message.
Fig. 1 shows sample definitions of TASKS element and TASKID for PROCESS module.
 Messages may be sent by Arena when an entity enters the following modules:
TRANSPORT, PROCESS, ENTER, LEAVE, DELAY, ROUTE and MOVE (TASKID may be
assigned to these modules). To reply to the Arena message external process uses TGID
defined in TASKS element. Arena may also receive and process messages which are not

166

Slota, Malopolski: Integration of Simulation Software Arena with FMS Control System

associated to any message sent by Arena. Such messages are referred to as Unsolicited
messages.

Figure 1: Arena dialog boxes for PROCESS module and TASK definition.

 Arena communicates with external processes through communication library (dynamic
linked library) RTDLL.dll. The library implements socket communication mechanism. To
enable exchanging messages library RTDLL.dll should be loaded, option Run in Execution
Mode should be checked and value for Advance Simulation Time Using a Real Time Factor
should be set to 1 (Fig. 2).

Figure 2: Arena RT settings.

 The first step of running Arena model in execution mode is establishing a connection with
an external process. Arena goes into a listen state and waits for connection request. After a
correct connection request has occurred it is accepted and socket communication is
established. Any time Arena model needs to send a message to an external process

167

Slota, Malopolski: Integration of Simulation Software Arena with FMS Control System

writeIPCQueue function, which sends messages through the socket, is called. When an
external process sends a message to Arena readIPCQueue function, which reads data form the
socket, is called. These functions are implemented in RTDLL.dll provided with Arena.

3. AN IDEA OF FMS CONTROL WITH ARENA

Arena RT provides communication mechanism and tools for definition of messages (data,
format and when the message should be sent). These messages will be used as task commands
sent from Arena to local controllers of the system to execute activities. Arena may receive
reply messages from local controllers which will be used as confirmation of activities’
execution. When an entity enters a module with assigned TASKID a command to execute an
activity is sent to local controllers. The entity is held in the module for a defined period of
time (during simulation) or until a reply message confirming activity execution is received
(during control). The diagram of the Arena based FMS control system is presented in Fig. 3.

M
es

sa
ge

D

is
pa

tc
he

r

C
on

tro
lle

r1

C
on

tro
lle

r2

C
on

tro
lle

rN

LO
C

AL

C
O

N
TR

O
LL

ER
S

. . .

Arena model

RT Library AR
EN

A

Interface to
Arena

Interface to
local controllers

FM
S

de
sc

ri p
tio

n

Figure 3: Structure of Arena based FMS control system.

 To integrate Arena with local controllers of FMS computer program Message Dispatcher
is introduced. Message Dispatcher executes the following tasks:
• receives commands of activity execution from Arena, translates them into the format

required by local controllers and dispatches them to local controllers which are responsible
for the activity execution,

• receives messages confirming activity execution from local controllers, translates them into
the format required by Arena and sends them back to Arena.

 Data necessary to translate and transfer messages between Arena and local controllers are
stored in the module FMS description.

168

Slota, Malopolski: Integration of Simulation Software Arena with FMS Control System

4. IMPLEMENTATION AND VERIFICATION

4.1 EMCO system description

The proposed solution of using Arena for FMS control is implemented for an educational
production system EMCO in the laboratory of Production Engineering Institute at Cracow
University of Technology.
 The system consists of two lathes EMCO COMPACT 5PC and robot MITSUBISHI
which transports workpieces between a small storage and the machines. The layout and
control structure of the system is shown in Fig. 4.

Lathe 1

Lathe 2

Robot

WP MSC1

RS232

RS232

MSC2

RS232

CENTRONICS
Fast Ethernet

PC1

PC2

PC3

CNC

PC4

Figure 4: Diagram of EMCO control system [9].

 The main parts of local controllers, taking into account communication, are the
controllers’ software interfaces running on PC1, PC2 and PC3 computers. They use
Distributed Component Object Model technology (DCOM) technology [15] to communicate
with each other and with higher level controller. Message Dispatcher runs on PC1 and
communicates with these software interfaces of local controllers. Arena runs on PC4.

4.2 Implementation of Message Dispatcher

Message Dispatcher is an application coded in C++ with the use of Microsoft provided MFC
library. It is designed to run under Windows NT/XP operating system. To exchange messages
with local controllers Message Dispatcher uses DCOM technology.
 FMS description contains a list of local controllers of the system Contr_list and a list of
activities executed in the system Act_list. Each controller in Contr_list is defined by the
following data: c_name – name of the controller, c_guid – unique identifier of the controller
used in DCOM, comp_name – name of the computer which runs the controller, c_status – a
flag indicating if the controller is connected to Message Dispatcher. Each activity in Act_list
is defined by data: Arena_act_name – name of the activity defined in Arena, Contr_act_name
– name of the activity defined in local controllers, act_ID – activity identifier generated by
Arena, contr_list – list of controllers which are responsible for activity execution, exe_
contr_list - list of controllers which are currently executing the activity.

169

Slota, Malopolski: Integration of Simulation Software Arena with FMS Control System

 In the initial stage Message Dispatcher establishes connections with Arena and with local
controllers of FMS included in Contr_list.
 Window of running Message Dispatcher with a list of messages exchanged between
Arena and local controllers of EMCO system is presented in Fig. 5.

Figure 5: Message Dispatcher window.

Operation of Message Dispatcher is driven by messages received asynchronously from
Arena and local controllers. Tasks executed by Message Dispatcher when a message is
received are presented in Fig. 6.

˛˛

Receive a message from
Arena

Read Arena_act_name
and act_ID

Find activity A in
Act_list

Save activity A in
Exe_act_list

For each controller in
contr_list

Send message to
the controller

Add the controller
to exe_contr_list

Receive a message from
local controller

Identify the sender
controller

Find confirmed activity
in Exe_act_list

Remove the controller
from exe_contr_list

Send message to
Arena

Is
exe_contr_list

empty

Yes

Wait for the next
message

No

Figure 6: Diagram of Message Dispatcher operation.

170

Slota, Malopolski: Integration of Simulation Software Arena with FMS Control System

4.3 Arena model of EMCO system

Arena model of EMCO system is presented in Fig. 7. In the model three stations are defined:
TABLE, LATHE1 and LATHE2. Routing is added to each generated workpiece (LATHE1
and then LATHE2) and workpieces are moved to TABLE station. Then single workpieces are
processed in the system according defined routes.

WORKPIECES ROUTING

(MSQ(NS,IS+1) == LATHE1)
(MSQ(NS,IS+1) == LATHE2)

Else

CONTROL

TO LATHE 1

ON LATHE1
MACHINING

ON LATHE2
MACHINING

FINISHED
WORKPIECES

LATHE1

LATHE2

LATHE2
WAITING FOR

ROBOT
REQUEST
LATHE1

LATHE1
RELEASE

TRANSPORT

ROBOT
REQUEST

TABLE

ROBOT
TABLE FREES

LATHE1
TABLE SEIZE

LATHE2
LATHE1 SEIZE

TRAN1

Tasks

TABLE
True

False

CHECK

ROBOT
REQUEST
LATHE2

LATHE2
RELEASE

OB2

Tasks

OB3

Tasks

TABLE

LATHE 1

LATHE 2

CONTROL

 0

 0

0

0

Figure 7: Real time Arena model of EMCO system.

 For communication purposes three tasks elements are defined in the model. They are
assigned to process modules: MACHINING ON LATHE1 and MACHINING ON LATHE2
and to transport module TRANSPORT. Tasks elements define data and format of messages
which Arena sends to Message Dispatcher. Initial and final positions of a workpiece for
different transport activities are calculated in CONTROL part of the model on the basis of the
workpiece’s current state and its route.

5. CONCLUSION

Building FMS control software is a laborious, time consuming and error prone process.
Simulation is a basic technique for analysis and verification of FMS control systems. The
possibility of using available simulation software and verified simulation models for FMS
control eliminates all the work necessary to build special control systems and adapt

171

Slota, Malopolski: Integration of Simulation Software Arena with FMS Control System

simulation models for control. What is necessary is to integrate simulation software with
existing local controllers of FMS. In the paper FMS control system based on Arena
simulation software is presented. To enable exchanging messages between Arena and
controllers of FMS Message Dispatcher is designed and then implemented and verified for
EMCO system. Since local controllers of FMS (CNC, PLC, PC based controllers) may
require different communication protocols and data format to exchange information with
other applications implementation of Interface to local controllers module of Message
Dispatcher (Fig. 3) is a dedicated solution. The future work will concern restructuring
Message Dispatcher so that it is more flexible. FMS description should be stored in an
external file (database, or text file). Interface to local controllers should be implemented
separately, for example as a dynamic linked library – communication library. These changes
will enable using Message Dispatcher application for different systems just by replacing
database file and communication library. Message Dispatcher and model of FMS ought to be
developed to handle error messages caused by system devices and communication failures.

REFERENCES

[1] Valckenaers, P. (2000). Analysis and Evaluation of change and disturbances in industrial plants,

WP1DisseminationReport, MASCADA Project, ESPRIT LTR 22728, K.U. Leuven, PMA
[2] Ylipää, T. (2002). Correction, prevention and elimination of production disturbances, PROPER

project description, Department of Product and Production Development (PPD), Chalmers
University of Technology, Gothenburg

[3] Lalic, B.; Cosic, I.; Anisic, Z. (2005). Simulation based design and reconfiguration of production
systems, International journal of simulation modelling, Vol. 4, No. 4, 173-183,
doi:10.2507/IJSIMM04(4)2.047

[4] Jain, A.; Jain, P. K.; Singh, I. P. (2004). An investigation on the performance of dispatching rules
in FMS scheduling, International journal of simulation modelling, Vol. 3, No. 2-3, 49-60

[5] Joines, J. A.; Barton R. R.; Kang, K.; Fishwick, P. A. (2000). A simulation test-bed to evaluate
multi-agent control of manufacturing systems, Proceedings of the 2000 Winter Simulation
Conference

[6] Chick, S.; Sánchez, P. J.; Ferrin, D.; Morrice, D. J. (2003). Simulation-based scheduling for
dynamic discrete manufacturing, Proceedings of the 2003 Winter Simulation Conference

[7] Pierzchala, W. (1999). Planowanie zadań produkcyjnych w oparciu o wirtualny proces
wytwarzania, Postępy Technologii Maszyn i Urządzeń, Vol. 23, No. 4, 71-90

[8] Jain, P. K.; Fukuda, Y.; Komma, V. R.; Reddy, K. V. S. (2006). Performance modelling of
reconfigurable assembly line, International journal of simulation modelling, Vol. 5, No. 1, 16-24,
doi:10.2507/IJSIMM05(1)2.049

[9] Slota, A. (2003). Application of Object Observable Petri Nets in simulation and operational
control of discrete manufacturing systems, Proceedings of the 14th International DAAAM
Symposium, 431-432

[10] Zając, J. (1999). Modelling Manufacturing Control System: Multi-Agent Approach. Postępy
Technologii Maszyn i Urządzeń, Vol. 23 No. 4, 137-153

[11] Cyklis, J.; Zając, J.; Słota, A. (2004). Models of manufacturing system for simulation and
control, Manufacturing Engineering, Vol. 4, No. 3. 10-15

[12] Klingstam, P.; Gullander, P. (1999). Overview of simulation tools for computer-aided production
engineering, Computers in Industry, Vol. 38, No. 2, 173-186

[13] Kelton, W. D.; Sadowski, R. P.; Sadowski, D. A. (2002). Simulation with Arena, McGraw-Hill
Companies, ISBN 0-07-112239-7, New York

[14] Pegden, C. D.; Shannon R. E.; Sadowski R. P. (1995). Introduction to Simulation
Using SIMAN, McGraw-Hill, Inc.

[15] Zajac, J. (1998). Interobject communication in distributed manufacturing using COM
technologies, Proceedings of the 9th International DAAAM Symposium, 513-514

172

http://dx.doi.org/10.2507/IJSIMM04(4)2.047
http://dx.doi.org/10.2507/IJSIMM05(1)2.049
http://www.ingentaconnect.com/content/els/01663615;jsessionid=23eagki6mcy2t.victoria

