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Abstract 
In this paper, an algorithm for order reduction of linear multivariable systems is proposed 
using the combined advantages of the dominant pole retention method and the error 
minimization by Genetic algorithm. The denominator of the reduced order transfer function 
matrix is obtained by retaining the dominant poles of the original system while the numerator 
terms of the lower order transfer matrix are determined by minimizing the integral square 
error in between the transient responses of  original and reduced order models using Genetic 
algorithm. Each element of the transfer function matrix of the original system is considered 
separately. The reduction procedure is simple and computer oriented. The proposed algorithm 
guarantees stability of the reduced order transfer function matrix if the original high order 
system is stable and is having superior features, including easy implementation and good 
computational efficiency. The proposed algorithm has been applied successfully to the 
transfer function matrix of a 10th order two-input two-output linear time invariant model of a 
practical power system. The performance of the algorithm is tested by comparing the relevant 
computer simulation results. 
(Received in November 2006, accepted in May 2007. This paper was with the authors 1 month for 1 revision.) 
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Nomenclature 

, , , ,tV P Qδ ω   Synchronous machine (s.m.) torque angle, speed, terminal voltage, 
                                    active and reactive power 

1 2 3 4 5, , , , ,K K K K K K6    s.m. linear model parameters 
, , ,a e mH T T T   s.m. inertia constant, accelerating, electrical and mechanical torque 
,e eR X   Equivalent resistance and reactance of external system 

' '
0, ,q FD dE E τ   Voltage proportional to d-axis flux linkages, field voltage and 

                                   open-circuit time constant 
, ,E E EK S τ   Self-excited field constant, saturation function and time constant 

                                   of exciter 
, ,A A RK vτ   Regulator gain, time constant and output voltage 
,F FK τ   Rate feedback (RF) gain and time constant  
,R RK τ   Transducer/filter gain and time constant 

0 0, , sK Vτ   Speed gain, reset time-lag constant and voltage output of power 
         system stabilizer (PSS) 

1 3 2 4, , ,τ τ τ τ   Lead and lag time constants of PSS 
s   Laplace operator 
Δ   Incremental (step) change of input 
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1. INTRODUCTION 
 
Every physical system can be translated into mathematical model. The mathematical 
procedure of system modelling often leads to comprehensive description of a process in the 
form of high order differential equations which are difficult to use either for analysis or 
controller synthesis. It is hence useful, and sometimes necessary, to find the possibility of 
finding some equation of the same type but of lower order that may be considered to 
adequately reflect the dominant characteristics of the system under consideration. Some of the 
reasons for using reduced order models of high order linear systems could be:  
• To have a better understanding of the system. 
• To reduce computational complexity. 
• To reduce hardware complexity. 
• To make feasible controller design. 
      A large number of methods are available in the literature for order reduction of linear 
continuous systems in time domain as well as in frequency domain [1-7]. The extension of 
single-input single-output (SISO) methods to reduce multi-input multi-output (MIMO) 
systems has also been carried out in [8-11]. Each of these methods has both advantages and 
disadvantages when tried on a particular system. In spite of several methods available, no 
approach always gives the best results for all systems.  
      Further, numerous methods of order reduction are also available in the literature [12-17], 
which are based on the minimization of the integral square error (ISE) criterion. However, a 
common feature in these methods [12-16] is that the values of the denominator coefficients of 
the low order system (LOS) are chosen arbitrarily by some stability preserving methods such 
as dominant pole, Routh approximation methods, etc. and then the numerator coefficients of 
the LOS are determined by minimization of the ISE. In [17], Howitt and Luss suggested a 
technique, in which both the numerator and denominator coefficients are considered to be free 
parameters and are chosen to minimize the ISE in impulse or step responses.  
      Recently, Genetic algorithm (GA) is becoming popular to solve the optimization problems 
in different fields of application mainly because of their robustness in finding an optimal 
solution and ability to provide a near optimal solution close to a global minimum. Unlike 
strict mathematical methods, the GA does not require the condition that the variables in the 
optimization problem be continuous and different; it only requires that the problem to be 
solved can be computed. GA employs search procedures based on the mechanics of natural 
selection and survival of the fittest. The GAs, which use a multiple point instead of a single 
point search and work with the coded structure of variables instead of the actual variables, 
require only the objective function thereby making searching for a global optimum simpler 
[18-19]. The present attempt is towards evolving a new algorithm for order reduction of linear 
multivariable systems, which combines the advantages of the dominant pole retention method 
and the error minimization by GA. Basically; the method starts with fixation of the 
denominator of the LOS by dominant pole retention method followed by the determination of 
coefficients of the numerator polynomials of each element of the LOS transfer matrix by 
minimizing the ISE in between the transient responses of original and LOS using GA. In the 
following sections, the algorithm is described in detail and the same has been applied to a 10th 
order two-input two-output linear time invariant model of a practical power system [20]. The 
performance of the algorithm is tested by comparing the relevant computer simulation results. 
 
2.  DESCRIPTION OF THE ALGORITHM 
 
Let the transfer function matrix of the high order system (HOS) of order 'n' having ‘p’ inputs 
and ‘m’ outputs be: 
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where, 1 2 ...... nλ λ− < − < < −λ  are poles of the HOS. 
      Let, the transfer function matrix of the LOS of order 'r' having ‘p’ inputs and ‘m’ outputs 
to be synthesized is:  
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is a m× p transfer matrix. 
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where, 1 2 ...... rλ λ− < − < < −λ are the dominant poles of the HOS, then steps are as under. 

2.1  Determination of the denominator coefficients of LOS 
 
Retention of dominant poles of HOS in LOS [13, 21]:  

Depending on the order to be reduced to, the poles nearest to the origin are retained. This 
implies that the over all behavior of the reduced system will be very similar to the original 
system, since the contribution of the unretained eigen values to the system response are 
important only at the beginning of the response, where as the eigen values retained are 
important throughout the whole of the response, and, infact, determine the type of the 
response of the system. Therefore, the denominator polynomial in (5) is now known, which is 
given by: . 2 1

1 2 1( ) ....... r r
o rD s d d s d s d s s−

−= + + + + +%
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2.2  Determination of the numerator coefficients of LOS by Genetic Algorithm  
 
In the present study, GA is employed to minimize the objective function ‘E’, which is the 
integral square error in between the transient responses of original (gij(s)) and reduced (rij(s)) 
order models and is given by: 
                               2

0
[ ( ) ( )]ij ijE g t r t dt

∞
= −∫                                                   (7) 

where, i= 1, 2, …, m;  j = 1, 2, …, p and gij(t), rij(t) are the unit step responses of original and 
reduced order models, respectively and the parameters to be determined are the numerator 
coefficients ( 0,1,...., ( 1))i i r= −α of reduced order models (rij(s)) of the LOS [R(s)]. 
      For the purpose of minimization of (7), routines from GAOT toolbox are used. For 
different problems, it is possible that the same parameters for GA do not give the best solution 
and so these can be changed according to the situation. In Table I, the typical parameters for 
the GA optimization routines, used in the present study are given. The description of these 
operators and their properties can be found in [22]. One more important point that affects the 
optimal solution more or less is the range for unknowns. For the very first execution of the 
program, wider solution space can be given and after getting the solution one can shorten the 
solution space nearer to the values obtained in the previous iteration. The computational 
flowchart of the GA optimization is shown in Fig. 1. 
 

Table I: Typical parameters used by the Genetic Algorithm. 

Name Value (type) 
Number of generations 200 
Population size 50 
Type of selection Normal geometric [0.08] 
Type of crossover Arithmetic [2] 
Type of mutation Nonuniform [2 200 3] 
Termination method Maximum generation 
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Figure 1: Flowchart of Genetic Algorithm. 
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3.  PRACTICAL POWER SYSTEM UNDER STUDY 
 
The single-machine infinite-bus (SMIB) power system shown in Fig. 2 is considered in this 
study.  The machine is supplying power through a step-up transformer and a high-voltage 
transmission line to an infinite grid. In the Fig. 2, XT and XL represent the reactance of the 
transformer and the transmission line respectively; VT and VB are the generator terminal and 
infinite bus voltage, respectively. 
 

XL

VB

XTG VT

 
 Figure 2: Single-machine infinite-bus (SMIB) power system. 

 
      The Phillips-Heffron model of the SMIB power system is shown in Fig. 3. The system 
consists of a three-phase 160-MVA synchronous machine with automatic excitation control 
system (i.e. a standard IEEE Type-I exciter with rate feedback (RF) and power system 
stabilizer (PSS)). This simple synchronous machine model was developed by Heffron and 
Phillips [23]. The simplicity and overall usefulness of this model continues to find wide use 
by investigators in power system studies [24]. The numerical values of the parameters, which 
define the total system as well as its operating point, are given in Appendix A [25].        
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Figure 3:  Block diagram representation of Phillips-Heffron model of single-machine infinite-

bus (SMIB) power system. 
 
      Based on the state variables (Fig. 3) and the values of the parameters and the operating 
point (Appendix A), the system of Fig. 3 (without accounting for the limiters) may be 
described in state-space form as: 
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and the numerical values of the matrices A , B  and C  are given in the Appendix B. 
 
4.   APPLICATION OF THE PROPOSED ALGORITHM TO THE 

POWER SYSTEM AND SIMULATION RESULTS 
 
The transfer function matrix (based on the numerical values of the matrices A, B and C) of the 
10th order two-input two-output linear time invariant model of practical power system under 
study is given by : 
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12 ( ) 29.09 1868 4.61 10 5.459 10 3.185 10 8.702 10a s s s s s s s= + + × + × + × + ×   

                                                                                7 2 6 51.206 10 7.606 10 6.483 10s s+ × + × + ×
7 6 4 5 5 4 5 3
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     6 2 5 41.084 10 2.972 10 1.942 10− × − × − ×s s
 
      The poles of the above system [ (  are at: )]G s
 λ1 = -0.1001, λ2, 3 = -0.2392 ± j 3.2348, λ4, 5 = -0.8977 ± j 1.3552, 

 λ6 = -2.1375, λ7 = -9.6454, λ8 = -11.9632, λ9, 10 = -19.0451 ± j 2.4859. 
 
      The proposed algorithm is applied to the above multivariable system and the reduced 
order models (rij(s)) of the LOS [R(s)] are obtained. The general form of 3rd order reduced 
transfer function matrix is taken as:  

                           
11 12

21 22

( ) ( )1[ ( )]
( ) ( )( )

b s b s
R s

b s b sD s
⎡ ⎤

= ⎢
⎣ ⎦% ⎥                                                                          (10) 
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2

11( ) 7.4 24 2.3b s s s= − − ,  , 2
12 ( ) 0.625056 28.901348 2.674504b s s s= + +

             ,   2
21( ) 0.616110 7.954828 1.032787b s s s= − + + 2

22 ( ) 1.5073 2.9999 0.0808.b s s s= − − −
       
      The poles of the LOS [ ( )]R s  are at λ1 = -0.1001, λ2, 3 = -0.2392 ± j 3.2348. 
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      The adequacy of the 3rd order reduced models obtained above is tested by comparing the 
time responses of the outputs (i.e. δ  and tV  ) of the original 10th order system (9) and those of 
the 3rd order reduced system (10), subject to the same input step change. The time responses 
shown in Fig. 4 (a)-(f) are also compared with the 3rd order reduced models obtained by 
Papadopoulos and Boglou [20] and are computed for three distinct input step changes: 
• with  = 0.05 p.u. and Re ( )fV sΔ   ( )mT sΔ  = 0 ; 
• with  = 0 and Re ( )fV sΔ   ( )mT sΔ  = 0.05 p.u. ; and 
• with  = 0.05 p.u. and Re ( )fV sΔ  ( )mT sΔ  = 0.05 p.u.   
 

 
 
Figure 4 (a): and  p.u. Re 0.05fVΔ = 0mTΔ =
 

 
 
Figure 4 (b): and p.u. Re 0.05fVΔ = 0mTΔ =
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Figure 4 (c): and p.u. Re 0fVΔ = 0.05mTΔ =

 
Figure 4 (d): and p.u. Re 0fVΔ = 0.05mTΔ =

 
Figure 4 (e): and p.u. Re 0.05fVΔ = 0.05mTΔ =
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Figure 4 (f):  and p.u. Re 0.05fVΔ = 0.05mTΔ =
 
      From the simulation results shown in Fig. 4 (a)-(f), it is clear that the 3rd order reduced 
system (10) obtained by the proposed algorithm is adequate since the time responses of its 
outputs coincide quite well with those of the original 10th order system for the same input step 
change.  
 
5.  COMPARISON OF THE METHODS 
 
A comparison of the proposed algorithm with some well known existing order reduction 
techniques (for 3rd order reduced models), is also shown as given in Table II. An error index 
R.I.S.E., known as relative integral square error [26] in between the transient parts of original 
(gij(s)) and reduced (rij(s)) order models is calculated to measure the goodness of the LOS (i.e. 
the smaller the R.I.S.E., the closer is rij(s) to gij(s)). This R.I.S.E. is calculated for each 
element (rij(s)) of the transfer function matrix of the LOS[ ( )]R s , and it is given by: 

                  2 2

0 0
[ ( ) ( )] [ ( ) ( ) ]ij ij ij ijJ g t r t dt g t g

∞ ∞
= − − ∞∫ ∫ dt                        (11) 

where, . 1, 2; 1, 2i j= =
and ,  are the unit step responses of original and reduced order models, respectively. ( )ijg t ( )ijr t
      The proposed algorithm has been compared with these techniques [27-30] due to the 
following reasons : 
• These techniques provide explicit error bounds for the reduction-error. 
• These techniques are generally considered to be the standard to measure goodness of the 

linear model reduction. 
• These techniques are easy to implement as standard routines are freely available on the 

web [31] or are built into Matlab toolboxes.   
      The proposed algorithm has also been compared with Papadopoulos and Boglou [20]. 
      It can be seen in Table II that the proposed algorithm gives low value of J for all values of 
rij (i = 1, 2;  j = 1, 2) in comparison to the other existing techniques. 
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Table II: Comparison of reduced order models. 

R.I.S.E. J for (ijr 1, 2; 1, 2i j= = ) 
2 2

0 0
[ ( ) ( )] [ ( ) ( ) ]ij ij ij ijJ g t r t dt g t g dt

∞ ∞
= − − ∞∫ ∫  

Method of Order Reduction 11r  12r  21r  22r  
Proposed Algorithm 0.995330 0.069978 1.919841 0.978182 
Papadopoulos and Boglou [20] 1.000215 0.683081 2.854987 1.001437 
Moore [27] 0.939453 0.568192 3.953609 0.872135 
Safonov and Chiang [28] 1.324429 205.8792 79.98665 0.034152 
Safonov and Chiang [29] 0.939446 0.563939 3.931755 0.872409 
Safonov, Chiang and Limebeer [30] 0.943603 0.047862 17.445711 1.057315 
 
6.  CONCLUSIONS
 
A new algorithm for the order reduction of linear multivariable systems has been presented in 
which the dominant poles are retained according to the order to be reduced to, while the 
Genetic algorithm has been used to determine the zeros by minimizing the integral square 
error between the transient responses of original and reduced order models. Each element of 
the transfer function matrix of the original system is considered separately. The algorithm is 
simple, rugged and computer oriented. The algorithm has been implemented in Matlab 7.0 on 
a Pentium-IV processor and the computation time is negligible being less than 1 minute. The 
algorithm has been applied successfully to a 10th order two-input two-output linear time 
invariant model of a practical power system.  
      The adequacy of the low order models obtained by the proposed algorithm has been 
judged by comparing the time responses of their outputs to the corresponding ones of the 
original system model. A comparison of the proposed algorithm with some well known 
existing order reduction techniques is also shown as given in Table II, from which it is clear 
that the proposed algorithm is comparable in quality with the other existing techniques. 
      In the present work, the GA combined with the dominant pole retention method has been 
applied for the order reduction of a power system model. The results coming out are quite 
encouraging but, more work is being carried out by us in this area and further investigations 
are required before reporting the same. A comparative study of the proposed algorithm with 
the other optimization techniques available in the literature such as Particle swarm, Ant 
colony, etc. is being carried out, which is also one of our future works. 
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APPENDICES  

Appendix A.  Numerical values of system parameters and operating point. 

Synchronous machine : 3-phase, 160 MVA, pf = 0.894, dx  = 1.7, qx  = 1.6, '
dx  = 0.245 p.u.,  

'
doτ  = 5.9, H = 5.4s, Rω  = 314 rad s-1. 

Type-I exciter : AK  = 50, EK  = -0.17, ES  = 0.95, FK  = 0.04, RK  = 1,  = 1, 0K Aτ  = 0.05, Eτ  = 0.95, 

Fτ  = 1.0, Rτ  = 0.05, 0τ  = 10.0, 1τ  = 3τ  = 0.440, 2 4=τ τ  = 0.092s. 
External System : eR  = 0.02, eX  = 0.40 p.u. (on 160 MVA base). 
Operating Point :  = 1.0,  = 0.5, oP 0Q

0FDE  = 2.5128, 0qE  = 0.9986,  = 1.0,  = 1.0 p.u.,  
0t

v
0mT

0δ  = 1.1966 rad,  = 1.1330, ,  = 0.3072,  = 1.8235,  = -0.0433,  = 0.4777.  1K 2 1.3295K = 3K 4K 5K 6K

 
Appendix B.  Numerical values of matrices A, B and C of the original 10th order system. 

0.5517 0 0.3091 0 0 0 0 0 0 0.1695
0.0410 0 0.0350 0 0 0 0 0 0 0

0 314.1593 0 0 0 0 0 0 0 0
9.5540 0 0.8660 20 0 0 0 0 0 0
0 0 0 0 1

0.1962 10.8696 0.1672 0 0
0.9386 51.9849 0.7999 0 0
0.9386 51.9849 0.7999 0 0

0 0 0 1000 1000
0 0 0 0 0

A

− −⎡
⎢− −⎢
⎢
⎢ − −⎢
⎢ −

= ⎢
− −⎢
⎢− −⎢
− −⎢
⎢ − −⎢
⎢⎣

0 0 0 0.0421 0.0328
10.8696 0 0 0 0
41.1153 10.8696 0 0 0
41.1153 10.8696 0.1 0 0

0 0 1000 20 0
0 0 0 1.0526 0.8211

⎤
⎥
⎥
⎥
⎥
⎥
⎥−
⎥

− ⎥
⎥− − ⎥

− − − ⎥
⎥− ⎥
⎥− ⎦

 
0 0
0 0.0926
0 0
0 0
0 0
0 0.4428
0 2.117
0 2.117
1000 0
0 0

B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

9
9

;      
0 0 1 0 0 0 0 0 0 0
0.4777 0 0.0433 0 0 0 0 0 0 0

C ⎡ ⎤
= ⎢ ⎥−⎣ ⎦
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