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Abstract 
In this paper the possible advantages in introducing multiple controls in the analysis of 
epidemic models are investigated. Usually, only the susceptible or infected people are 
controlled by vaccination or by quarantine and/or medicine treatment; in this paper multiple 
controls, both for the susceptible and infected are considered. The problem is studied both in 
the case of fixed and free final time. Numerical results are considered for simulated data 
showing the effects of multiple controls and the rule of each parameters of the model. Also a 
simulation on real data regarding the course of measles in Africa is presented.   
(Received in September 2007, accepted in March 2008. This paper was with the authors 1 month for 1 revision.) 
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1. INTRODUCTION  
 
The literature on epidemics is extremely vast. One of the motivations for the study of 
mathematical models for epidemics is related to the possibility of evaluation of different 
control strategies. The decision about the best vaccination campaign [1, 2], screening and 
educational campaigns [3], resource allocation [4, 5] can be supported by suitable modelling 
and analysis of control strategies. A particularly encouraging approach uses the optimal 
control theory; interesting reviews can be found in [6]. Analytical results on the optimal 
control problems for epidemics are extensively described in [7]; in that paper models with 
control by vaccination, quarantine, screening or health campaigns are studied with a rather 
general choice for the interaction function. Also the presence of latency is considered, both in 
case of control by vaccination and in case of control by quarantine and screening. Usually, the 
control is assumed constrained between zero and a maximum value; it takes into account 
limitations from financial and technical point of view and, more in general, of resource. This 
latter problem of limited resource allocation has been studied in particular in [4, 5]; in [4] 
multiple population subgroups are considered with the aim of minimizing the number of new 
infections and maximizing the number of quality-adjusted life years gained. In [5] the 
problem of optimal allocation of a limited resource among multiple noninteracting 
populations is analysed; it is shown that the optimal resource allocation depends on many 
factors including the size of the population, the state of the epidemic in each population 
before resources are allocated, the length of the time horizon. Applications of optimal control 
theory to specific diseases can be found in [8-12]. In [8] the optimal control is applied to the 
chemotherapy of human immunodeficiency virus (HIV) dealing with the problem of deciding 
when and how treatment should be initiated, whereas in [9] the effects of a preventive vaccine 
in the transmission dynamics of HIV infection is studied. Different control strategies 
(isolation, quarantine, closing schools, tracing contacts of diagnosed cases) are considered to 
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control emerging infectious diseases like SARS in [10]; the quarantine and tracing contacts of 
diagnosed cases appear to be successful in reducing transmission. Also in [11] strategies for 
the study and control of the HIV infection are considered whereas the optimal control theory 
is applied in the control program for tuberculosis in [12]. In [11, 12] two controls are 
assumed: in the first paper, one control boosts the immune system and the other delays the 
HIV progression; the interaction of HIV and T-cells in the immune systems is analysed and 
the optimal controls represent drug treatment strategies. In [12] the two control efforts 
considered represent case finding and case holding efforts; the optimal control is applied to a 
system consisting in six ordinary differential equations, modelling a two-strain tuberculosis 
model: the state variables represent the susceptibles, two different categories for the infected 
but not infectious, two different categories for the infectious  and one category for the treated. 
The papers [11, 12] are the first attempts to concern with multiple controls applied to 
epidemic model, meaning the aim to control all the state variables. In most of the relevant 
literature the control involves just one class of people, usually the susceptible or the infected; 
in this case it is shown [7] that the optimum is given by a maximum effort control at the 
beginning of the epidemic. Another important aspect in the study of epidemic model is related 
to the rule of the final time of the control effort. Usually it is assumed fixed and, if sufficiently 
small, uniqueness results for the optimal bounded control are established [11]. In [3] the 
optimal control of an epidemic by means of educational campaigns is considered; the total 
time of the campaign is assumed budge limited. The end of the epidemic outbreak is defined 
as the first instant such that the number of infective becomes less than one; in this case it is 
not necessary to deal with an infinite time horizon control problem. In [11] this latter problem 
is considered; it is shown that the infinite time-horizon vaccination and quarantine problems 
possess unique optimal solution given by a maximal effort control on some initial interval. 
Epidemiological models introduce the following notations: S stands for susceptible, that is the 
class of people who are not infected, I denotes the infected, R denotes the removed, that 
means dead or immune people. Some models introduce also the infected that are not yet 
infectious and are denoted by E. Therefore the most common models are denoted by SIR or 
SEIR notations and can vary each other for the functions describing the relation between one 
class of people and the others. When also the quarantined class Q is considered the SIQ or 
SIQR models are analysed, as in [13], in which periodic solutions by Hopf bifurcation are 
studied. In [14] another class is introduced, the class C of the “cross-immune individuals” and 
a SIRC model is considered and analysed with respect to influenza A. 
      In this paper the optimal control problem for SIR-epidemic model is considered; in 
particular control effort both for the susceptible and for the infected is assumed. First the final 
instant of the control effort is assumed constant and a comparison between the situations in 
which just one control is present is analysed. Moreover the multiple control effort is studied 
also in the case in which the final instant is assumed unknown and is a variable to be 
minimized. In Section 2 the general model with multiple control effort is presented; in Section 
3 and 4 the analysis of the multiple controls with fixed final instant and free final time is 
considered respectively. Numerical results are shown in Section 5, and a case study regarding 
the course of measle in Africa is analysed. 
 
2. THE SIR MODEL AND MULTIPLE CONTROLS  
 
Let us denote by x(t) the susceptible in a population, by y(t) the infected and by z(t) the 
removed. Following the most popular description of the epidemics [7], the dynamics of the 
epidemics, with interaction function f between the susceptible and the infected, can be written 
as, 
          (( ) , )x t f x= −& y    (1),                ( )( ) ,y t f x y yγ= −&    (2),                     ( )z t yγ=&    (3) 
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with initial known state condition for the susceptible and infected, 
( ) ( )00 0 0x x y y= =                                                   (4) 

      In this description the parameter γ > 0 denotes the rate of removal of the infected.  
      The introduction of the vaccination implies the presence in (1) of an additive term 
representing the effort for vaccination thus obtaining, 

( ) ( ) 1uxgy,xf)t(x −−=&                                                   (5) 
      The introduction of treatment or isolation for the infected may be described by 
introducing the term – h(x, y)u2 in (2) so that it becomes, 

( ) ( ) 2uy,xhyy,xf)t(y −−= γ&                                             (6) 
      Different choice for the interaction function f have been proposed in the relevant 
literature; in this paper the choice of [6] is adopted, 

( ) ( ), ,f x y xy x yβ 0β= + >                                            (7) 

      The controls u1 and u2 represent two different treatment strategies; for example, if g ≡ 1, 
u1 is the rate of vaccination; if h(x, y) = a + y / (x + y + b), a, b∈  R, u2 may represent the 
isolation effort or screening efficiency. The choices considered in this paper are the following, 
as suggested in [1, 6], 

( ) ( ) yy,xhxxg ==                                                     (8) 
      The two efforts are assumed to be limited both from below and above, namely, 
0≤a1≤u1≤b1, 0≤a2≤u2≤b2. Let us denote these box constraints by  

( )( ) ( ) ( ) ( ) ( )( )1 1 1 1 2 2 2 2 0Tq u t u t b a u t u t b a u t= − − − − ≤                 (9) 

As far as the cost functional is concerned two different choices tied to the final time tf 
are assumed. Namely, should the final time be fixed a priori, then the following cost function 
is considered 

( ) ( ) ( ) ( )2 2
1 2 1 1 2 2

0

t f

J u ,u y t c u t c u t dt⎡ ⎤= + +⎣ ⎦∫                                  (10) 

which, when minimized, amounts to decreasing the number of infected people at the 
minimum effort expressed in quadratic form. Section 3 is devoted to the analysis of the fixed 
final time setting. 
      On the other hand, should the final time be free, then the cost function 

( ) ff ttJ =                                                             (11) 
is assumed, along with an addition final state condition such as 

( ) Aty f ≤                                                               (12) 

The choice (11) is appropriate since in this case the aim is to determine controls u1, u2 
such that the infected are reduced below a given threshold within the minimum time. The 
analysis of the free final time case is carried out in Section 4. 
 
3. ANALYSIS OF THE MULTIPLE OPTIMAL CONTROLS WITH  
    FIXED FINAL TIME 
 
In this section the following problem is considered. 
      Problem formulation (P1): Given the system: 

( ) ( )1 2( ) ( )x t xy x y xu y t xy x y y yβ β= − + − = + − −& & uγ                      (13) 

with initial condition (4) and fixed final time tf find the controls ,  satisfying the  ou1
ou2
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constraints (9), minimizing the cost index (10). For the optimal control problem (P1) it is 
possible to state a result concerning the optimal controls ( )tuo

1  and ( )tu o
2 . 

Theorem 1: The above optimal control problem has the following solution: 

( )
1 1 1

1 1 1 1 1 1

1 1 1

2

2

2

o

o o o

o

a if ( t )x ( t ) / c a

u t ( t )x ( t ) / c if a ( t )x ( t ) / c b

b if ( t )x ( t ) / c b

λ

λ λ

λ

⎧ ≤
⎪⎪= ≤⎨
⎪

≥⎪⎩

1

1

1

2 ≤

2

2

2

≤

                        (14) 

( )
2 2 2

2 2 2 2 2 2

2 2 2

2

2 2

2

o

o o o

o

a if ( t )y ( t ) / c a

u t ( t )y ( t ) / c if a ( t )y ( t ) / c b

b if ( t )y ( t ) / c b

λ

λ λ

λ

⎧ ≤
⎪⎪= ≤⎨
⎪

≥⎪⎩

                    (15) 

where λ1 and λ2 are the adjoint variables satisfying the equations: 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )22
1 1 2 1 1t t t y t x t y t t uλ λ λ β λ= − + +& t                                (16) 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )22
2 1 2 2 2 21t t t x t x t y t t u t tλ λ λ β λ λ= − + − + + +& γ           (17) 

with final conditions:  
( ) ( ) 00 21 == ff tt λλ                                                    (18) 

Proof: The form of the optimal solution (14) and (15) and of the adjoint equations (16) and 
(17) comes from the Pontryagin’s maximum principle [15]. Let us introduce the Hamiltonian 
function: 

 ( ) ( )( ) ( )( )
( ) ( ) ( ) ( )

2 2
0 1 1 2 2 1 1 2

11 1 1 12 1 1 21 2 2 22 2 2

H y c u c u xy x y xu xy x y y yu

u b a u u b a u

λ λ β λ β

ω ω ω ω

= + + + − + − + + + − −

+ − + − + − + −

2γ
         (19) 

where ( ) ( ) ( ) ( ) 022211211 ≥t,t,t,t ωωωω  are penalty multipliers such that: 

( ) ( ) 00 11121111 =−=− uabu ωω at                                           (20) ou1

( ) ( ) 00 22222221 =−=− uabu ωω  at                                           (21) ou2
      The singular case λ0 = 0 cannot be realized, otherwise also λ1(t) = λ2(t) = 0, which is 
impossible.  Let us assume λ0 = 1. We differentiate the Hamiltonian (19) with respect to the 
states (x, y): 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )22
1 1 2 1t H x t t 1y t x t y t t uλ λ λ β λ= −∂ ∂ = − + +& t                            (22) 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )22
2 1 2 2 21t H 2y t t x t x t y t t u t tλ λ λ β λ λ= −∂ ∂ = − + − + + +& γ    (23) 

      Final conditions for the adjoint variables are given by (18), see [15]. 
      The optimality conditions of the optimal control problem yield: 

1 1 1 1 11 12 2 2 2 2 21 220 2 0 2H u c u x H u c u yλ ω ω λ ω ω= ∂ ∂ = − + − = ∂ ∂ = − + −       (24)  
so that, taking into account the bound constraints for the controls and the non-negativeness of 
the penalty functions, expressions (14) and (15) for the control variables are found.  
      The instants 1t  and 2t  in which 1 1 1 1 1( ) ( ) / 2ot x t c bλ = , 1 2 2 1 1( ) ( ) / 2ot x t c aλ =  are respectively 
the instant in which the control u1 changes from the maximum allowed value b1  to the values 
assumed by the function  and the instant in which the control u1( ) ( ) / 2ot x t cλ 1

1

1 changes from 

 to the minimum allowed value a1( ) ( ) / 2ot x t cλ 1. Similarly there are two instants  and  in 1t% 2t%
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which the control u2 changes from the maximum allowed value b2 to the values assumed by 
the function  and then to the minimum allowed value a2( ) ( ) / 2ot y t cλ 2 2. As observed in [11] 
and [12], the boundedness of the state and the structure of the differential system imply 
uniqueness of the optimal control provided that the fixed final time tf is small.      
 

Proposition: The quantity λ1x is monotonically decreasing, 0β∀ > ; if the parameter β > 0 is 
sufficiently small also the quantity λ2y is monotonically decreasing. 
Proof:  Substituting the expressions (13) and (16)-(17) in the quantity d (λ1x + λ2y) / dt  it can 
be easily derived that λ1x + λ2y is monotonically decreasing; moreover it is zero at the final 
time tf, from (18). It follows that 1 2 0 fx y , t tλ λ+ > ∀ < . Analogously, using this property, it 
may be easily deduced that also λ1x is monotonically decreasing. This implies that the 
commutation instants for the control u1 are such that 1 2t t< .  
      As far as the control u2 is concerned, it can be obtained that: 

( ) ( ) ( )22 1 2d y dt y xy x y x yλ β λ λ= − + + +  

and, if the parameter β is sufficiently small, λ2y is monotonically decreasing: this means that 
also the commutation instants for the control u2 are such that 1 2t t<% % . 
 
4. ANALYSIS OF THE MULTIPLE OPTIMAL CONTROLS WITH  
    FREE FINAL TIME 
 
Let us now consider the case in which the final time of the campaign is itself a variable tf > 0 
of the optimal control problem. This setting is of interest since it may correspond to a 
situation in which it would be necessary to estimate the minimum final time of the entire 
strategy of control, from vaccine to quarantine within which the infected drop below a given 
threshold A.  
      Problem formulation (P2): Given the system (13), with initial condition (4) find the 
controls ,  satisfying the constraints (9), and the final time tou1

ou2 f > 0 satisfying (12),  
minimizing the cost index (11). 
Theorem 2: The above optimal control problem has the following solution: 

1 1
1

1 1

( ) ( ) 0
( )

( ) ( ) 0
o a if t x t

u t
b if t x t

λ
λ

<⎧
= ⎨ >⎩

                                                 (25) 

2 2
2

2 2

( ) ( ) 0
( )

( ) ( ) 0
o a if t y t

u t
b if t y t

λ
λ

<⎧
= ⎨ >⎩

                                                (26) 

where λ1 and λ2 are adjoint variables satisfying the equation: 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )22
1 1 2 1 1t t t y t x t y t t uλ λ λ β λ= − + +& t                             (27) 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )22
2 1 2 2 2 2t t t x t x t y t t u t tλ λ λ β λ λ= − + + +& γ              (28) 

with transversality conditions:  

( ) ( ) ( )1 20 0o o
f ft t H tλ λ= = 0o

f =                                       (29) 

Proof: In this case the Hamiltonian, in the significant situation of λ0 = 1, is given by: 
( ) ( )( ) ( )( )

( ) ( ) ( ) (
1 2 1 1 2 2

11 1 1 12 1 1 21 2 2 22 2 2

, , , 1H x y u u xy x y xu xy x y y yu

u b a u u b a u

λ β λ β γ

ω ω ω ω

= + − + − + + − −

+ − + − + − + − )
       (30) 
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where ( ) ( ) ( ) ( ) 022211211 ≥t,t,t,t ωωωω  are penalty multipliers satisfying (20) and (21). 
      The necessary conditions are given by: 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )22
1 1 2 1t H x t t 1y t x t y t t uλ λ λ β λ= −∂ ∂ = − + +& t                      (31) 

( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )22
2 1 2 2 2t H 2y t t x t x t y t t u t tλ λ λ β λ λ= −∂ ∂ = − + + +& γ      (32) 

      The final conditions (29) descend from the maximum principle [15]. The optimality 
conditions yield: 

1 1 11 12 2 2 21 220 0H u x H u yλ ω ω λ ω ω= ∂ ∂ = − + − = ∂ ∂ = − + −                  (33) 
so that, taking into account the bound constraints for the controls and the non-negativeness of 
the penalty functions, expressions (25) and (26) for the control variables are found.       
 
5. NUMERICAL RESULTS  
 
Methods for solving optimal control problems can be classified as either direct methods or in 
direct methods [16, 17]. What distinguishes the two approaches is the way they look for a 
solution of the optimal control problem. An indirect method attempts to solve the optimal 
control necessary conditions (22)-(24), for the fixed final time, or (31)-(33) for the free final 
time. So that, for instance in the case of fixed final time, it is necessary for an indirect method 
to explicitly derive the adjoint equations (22), (23), the control equations (24) and all of the 
transversality conditions (18). In contrast, a direct method does not require explicit derivation 
and construction of the necessary conditions. A direct method does not construct the adjoint 
equations, control equations and any of the transversality conditions. In the context of optimal 
control both the above approaches have been used (see, for example, [12, 16, 18]). The major 
disadvantage of using an indirect method is that, even if feasible state and control solutions 
are known a priori, there is no guarantee that the computed solution will improve on the 
known one. Moreover, an indirect method needs to guess values for the adjoint variables and 
to numerically solve the adjoint equations which can be very ill-conditioned in practice [19]. 
For this reason we employed a direct collocation method to numerically solve the optimal 
control problems of the preceding sections. Here we will consider some numerical 
experiments which are needed to analyse the effective usefulness of the double control over 
both the susceptible and the infected individuals. First we consider the case in which the final 
time tf is fixed and then the problem in which the final time tf is free, so that it is a variable of 
the problem. Both the resulting optimal control problems are infinite dimensional in that the 
control and state variables are functions of the time t. To overcome the difficulty related to the 
infinite-dimensionality, all the approaches to the solution of an optimal control problem are 
based on the idea of solving a finite dimensional approximation to it. To obtain such an 
approximation, we adopt a direct transcription method based on a trapezoidal rule which 
allows us to “discretize” the optimal control problem. The resulting problem is a finite 
dimensional constrained nonlinear programming problem (NLP). Every transcription method 
is based on the idea of subdividing the so-called phase duration interval [0, tf] into n – 1 
segments or subintervals of equal length Δt by placing t0, t1, … tn-1 node, mesh or grid points 
such that 0 = t0 < t1 < … < tn-1 = tf. We consider the grid points to be equally distributed over 
the phase duration [0, tf]. Thus, by posing Δt = tf / (n – 1), the grid points can be expressed as 
tk = kΔt for k = 0, …, n – 1. Note that, t0 = 0 and tn-1 = tf. Let us denote by xk = x(tk),  yk = y(tk), 
u1,k = u1(tk), u2,k = u2(tk), for k = 0, …, n – 1, the value of the state and control variables on the 
grid points. According to the trapezoidal rule, (13) can be approximated by: 

1 1 1, 1 1 1 2, 1( , , , , ; ) 0 ( , , , , ; ) 0k k k k k k k k k kx y x y u t x y x y u tξ ζ+ + + + + +Δ = Δ =          (34) 
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k = 0, …, n – 2, where 1 1 1 1k k k k ,k( x , y ,x , y ,u ; t )ξ + + + Δ  and 1 1 2 1k k k k ,k( x , y ,x , y ,u ; t )ζ + + + Δ  are 
the defects of the approximation and are given by: 

1 1
1 1 1 1 1 1 1 1 1

1 1
1 1 2 1 1

1 1
2 1

1 1

2

2

k k k k
k k k k ,k k k k ,k k ,k

k k k k
k k k k ,k k k

k k k k
k k ,k k k ,k

k k k k

x y x yt( x , y ,x , y ,u ; t ) x x x u x u
x y x y

( x , y ,x , y ,u ; t ) y y
x y x yt y y u y y u

x y x y

ξ β β

ζ

β γ β γ

+ +
+ + + + + +

+ +
+ + + +

+ +
+ + +

+ +

⎛ ⎞Δ
Δ = − − − − − −⎜ ⎟+ +⎝ ⎠
Δ = − −

⎛ ⎞Δ
− − + − −⎜ ⎟+ +⎝ ⎠

1 2 1

t

 

k = 0, …, n – 2.  
      Equations (34) impose that all the defects of the discrete approximation of (13) be zero. 
We placed n = 200 grid points to carry out the above transcription and used the interior point 
nonlinear programming solver KNITRO v. 4.0 [20, 21] to compute a solution of the 
transcribed problem. This solver replaces the (NLP) by a series of barrier sub-problems 
controlled by a barrier parameter. The algorithm uses trust regions and a merit function to 
promote convergence to a solution of the problem. The algorithm performs one or more 
minimization steps on each barrier problem, then decreases the barrier parameter and repeats 
the process until the original problem has been solved to the desired accuracy. 
 
5.1  The fixed final time case 
 
In this case we consider optimal control problem (P1). The cost functional in (10) can be 
approximated by the following summation: 

1
2 2

1 1 2 2
k 0

n
k ,k ,ky c u c u

−

=

⎡ ⎤+ + Δ⎣ ⎦∑                                                (35) 

and by using (34) we can thus consider the finite dimensional nonlinear constrained problem: 

1 2

1
2 2

1 1 2 2

0 1
1 1 1 1

1 1 2 1

1 1 1 2 2 2

0

0

k k ,k ,k

n
k ,k ,k

x ,y ,u ,u , k 0
k , ,n

k k k k ,k

k k k k ,k

,k ,k

min   y c u c u t

s.t.   (x , y ,x ,y ,u ; t ) ,    k 0, ,n-2

       (x , y ,x ,y ,u ; t ) ,    k 0, ,n-2

       a u b ,    a u b ,   

ξ

ζ

−

=
= −

+ + +

+ + +

⎡ ⎤+ + Δ⎣ ⎦

Δ = ∀ =

Δ = ∀ =

≤ ≤ ≤ ≤

∑
K

K

K

( ) ( )0 00 0      k 0, ,n-1 x x ,     y y .∀ = = =K

  (36) 

      It is possible to show [18] that the necessary optimality condition for Problem (36) 
approximate in the limit, as n → ∞, the necessary optimality condition for Problem (35) given 
by the Pontryagin’s maximum principle [15]. The following choices for the parameters of the 
model are assumed: =β 0.044, =γ 0.1, =1a 0, =2a 0, =1b 0.2, =2b 0.1, 1, 10.  =1c =2c
      The initial conditions are 200, =)0(x =)0(y 50 and the final time tf is set equal to 80. 
These choices are reasonable, for example, for the HIV immunology model [11] or for the 
Tuberculosis model [12].  
      Fig. 1 a) reports the behaviour of the optimal control  along with the function 

 which shows that the computed solution satisfies relation (14). Analogously, 

Fig. 1 b) reports the behaviour of  and . Again, the computed solution 
satisfies (15). It results that the controls  and  remain at their maximum value for a 
while, then, decrease monotonically to their minimum allowed value. 

Ou1

1 2o( t )x ( t ) / cλ 1

2
Ou2 2 2o( t )y ( t ) / cλ

Ou1
Ou2
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a) b) 
 
Figure 1: Behaviour of the optimal controls:  
               a) behaviour of the optimal control  along with ,  Ou1 1 12o( t )x ( t ) / cλ

               b) behaviour of the optimal control  along with . Ou2 2 22o( t )y ( t ) / cλ
 
      Fig. 2 reports the behaviour of the state variables  (Fig. 2 a) and  (Fig. 2 b) at 
the optimum. The best behaviour of the susceptibles and of the infected in case of multiple 
controls may be appreciated considering the situation in which just one control is assumed. 

)(0 tx )(0 ty

 

a) b) 
 
Figure 2:  State variables at the optimum,  
                a) susceptibles  at the optimum,  )(0 tx
                b) infected  at the optimum.  )(0 ty
 
      In Fig. 3 a) the behaviour of the susceptible when only the susceptibles are controlled is 
plotted versus the behaviour of the susceptible obtained when only the infected are controlled. 
Analogously, Fig. 3 b) reports the behaviour of the infected when only the infected are 
controlled and when only the susceptibles are controlled. In order to show the influence that 
parameters β and γ have on the dynamic of susceptible and infected individuals respectively, 
optimal control problems for different values of these parameters are solved. In particular, 
Fig. 4 a) reports the dynamic of the susceptibles when parameter 1.0=γ  and parameter 

044.0 ,01.0 ,001.0=β . Whereas, Fig. 4 b) shows the behaviour of the infected when 
parameter 044.0=β  and parameter 01.0 ,05.0 ,1.0=γ . It is worth noting that, on the basis 
of numerical experiments,  is numerically insensitive to changes of the parameter β just 
like  is not affected by changes of the parameter γ. 

)(0 ty
)(0 tx
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a) 

 
b) 

Figure 3:  Behaviour of the susceptible and infected assuming just one control,  
                a) behaviour of the susceptibles,                   b) behaviour of infected. 
 

a) b) 

Figure 4:  Analysis of the influence of model parameters,  
                a) dynamic of the susceptibles when γ = 0.1 with different values of β, 
                b) behaviour of the infected when β = 0.044 with different values of γ. 
 
5.2  The free final time case 
 
Now we consider the case when the final time tf is free and is therefore itself a variable of the 
optimal control problem. In this particular case, given the definition of phase duration, we can 
write tf  = (n – 1)Δt. Thus, the fact that tf is free implies that the phase duration Δt is no more a 
fixed quantity but is itself a variable of the problem. In this case of free final time the optimal 
control problem (P2) is considered. This problem differs from the above problem (40) for the 
presence of tf in the cost functional and for the further requirement that the number of infected 
individuals at the final time be zero. The cost functional in Problem (P2) can be approximated 
by:  

1

k 0

n
t n t

−

=
Δ = Δ∑                                                              (37) 

and by using (34) the following finite dimensional nonlinear constrained problem can be 
considered: 
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where we set A = 0.01, a1 = a2 = 0 and x(0) = 200, y(0) = 50. In order to show the dependence 
of the optimal final time from the maximum allowed efforts, we solved problem (38) six 
times with increasing values for the upper bounds on the controls b1 and b2. In particular, for 
increasing values of b1 and b2 the following values of tf are obtained. 
 

Table I: Values of final instants tf obtained solving problem (38) 
                   for different values of the upper bounds on the controls. 

 

b1, b2 0.2,   0.1 0.4,  0.3 0.6,  0.5 0.8,  0.7 1.0,  0.9 1.2,  1.1 
tf 48.70 23.07 15.01 11.11 8.81 7.30 

 
      Accordingly, the experimentation pinpointed that the minimum final time decreases as the 
upper bounds increase. In Fig. 5, it can be noted that both the susceptibles and the infected 
decrease more quickly (smaller tf) with greater upper bound for the controls; it means that 
with greater values for the upper bounds b1 and b2 the controls can assume a greater values. 
  

a) b) 
Figure 5:  Behaviour of the state variables when varying the upper bound of the controls, 
                 a) behaviour of the susceptibles,                         b) behaviour of the infected. 
 
6. CASE STUDY  
 
In order to test the effectiveness of the double control strategy, we have considered a real 
epidemic control problem.  The data are taken from the World Health Organization website 
and concerns the course of measle in Africa, in the period between 1980 and 2005. 
 

Table II: Number of people infected by measle in Africa, between 1980 and 2005. 
 

ti (year) yi ti (year) yi ti (year) yi ti (year) yi
1980 1240993 1987 641057 1994 420193 2001 492116 
1981 1413184 1988 604244 1995 362925 2002 286380 
1982 1342685 1989 561896 1996 484914 2003 403572 
1983 1346883 1990 481204 1997 299623 2004 220732 
1984 1076106 1991 446517 1998 373149 2005 316224 
1985 1142002 1992 581125 1999 486660   
1986 676757 1993 395025 2000 520102   
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      During this period a great effort has been devoted to improve the number of vaccination 
so that, the data may be considered to refer to a model in which the major control was 
directed to the susceptibles that is to say u2 = 0. Let us suppose that the vaccination campaign 
adopted in Africa in the considered period follows the optimal control obtained by solving 
problem P1 fixing b2 = 0.  When b2 is fixed, Problem P1 depends on the parameters c1, c2, a1, 
a2, x0, y0, β and γ. We set c1 = 1, c2 = 10, b1 = 0.2, a1 = a2 = 0, x0 = 14,000,000 and  
y0 = 1,400,000. Parameters β and γ are unknown and are determined in such a way that ( )ity 0 , 
i = 0, …, 26, approximates as well as possible yi, for i = 0, …, 26. To this aim, we solve the 
least squares problem: 

( )( )
26 20

i 1
min   ; , . .   0.001 1  0 001 0.7i iy t y s t .β γ β γ

=
− ≤ ≤ ≤∑ ≤

)

                  (39) 

where (0
iy t ; ,β γ , i = 0, …, 26, are the sampled values at time instants ti of the infected state 

solution of Problem P1 for the given parameters β and γ. Every objective function evaluation 
of Problem (39) requires the solution of the optimal control problem P1 which implies that the 
derivatives of the objective function are not available. For this reason, we solve Problem (39) 
by using the derivative-free minimization algorithm [22]. The optimal parameter values which 
allow for a better approximation of the real data in the minimum least squares sense are 
β*= 0.0044 and γ*= 0.05. Fig. 6 a) reports the real normalized data along with the results of 
the simulation showing an accordance between y0(ti; β*, γ*) and yi, i = 0, …, 26. It is now 
possible to consider the complete model; that is the case when controls over both the 
susceptibles and infected are present, and solve the corresponding optimal control problem. In 
Fig. 6 b) the real number of infected is plotted versus the number of infected that should have 
occurred if multiple controls were adopted. As it can be noted in Fig. 6 b), if in the years 
1980-2005 a greater effort had been devoted both to vaccination and treatment/isolation, the 
infected should have decreased more quickly than in the real case. 
  

 
a)  

b) 
 
Figure 6: Analysis of real data, a) real normalized data and result of simulation,  
               b) real data, in which the population is controlled only by vaccination, versus the  
                   simulation result in which both the susceptibles and the infected are controlled. 
 
7. CONCLUSIONS  
 
The analysis of SIR epidemic model in the presence of multiple controls is studied. In usual 
models just the susceptible or the infected are controlled by either vaccination or quarantine 
or medicine. The presence of the multiple controls was studied both in case of fixed final time 
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and in the case in which the final time is a variable to be determined. Numerical results are 
presented showing that the presence of the double controls will diminish the number of 
susceptible and infected in a minor time than in case of a single control.  
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