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Abstract 
This paper presents a simulation study on production and inventory control at the supply 
chain (SC) level and examines through a series of experiments the potential impact of the 
Hybrid Kanban-CONWIP production control strategy on the trade-off between the conflicting 
objectives of maximising customer service level and minimising Work-In-Process (WIP). 
Simulation based optimisation is computationally expensive approach to determining an 
optimal configuration of operational parameters for any stochastic system. In this paper we 
demonstrate an optimisation framework that will yield solutions with an accuracy that is 
reasonable for decision makers and computationally less expensive than simulation based 
optimisation. A simulation model for a centralised serial SC adopting Hybrid Kanban-
CONWIP to process a single product was developed in order to explore the impact of some 
essential input factors on customer service level and average WIP through Design of 
Experiments (DOE), Gaussian Process Modelling (GP) and Metamodel-Based Optimisation 
using the Desirability Function. The precision of the results from this approach was 
determined by comparison to results from Simulation-Based Optimisation by means of 
Genetic Algorithms (GA). It has been shown that this framework will address the trade-off 
between accuracy and computational efficiency requirements of the decision maker. 
(Extended paper from the International Conference on Industrial Logistics – ICIL 2012, Zadar, Croatia. 
Received in August 2012, accepted in February 2013. This paper was with the authors 3 months for 1 revision.) 
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1. INTRODUCTION 

Supply chain management focuses on the integration of suppliers, manufacturers, warehouses, 
and stores. The challenge in supply chain (SC) integration is to co-ordinate activities across 
the entire supply chain so that the enterprise can improve performance, reduce system 
inventory levels and potential inventory cost, increase customer service level, better utilise 
resources, and effectively respond to changes in the market. Designing and implementing a 
globally optimal SC is quiet difficult because of its dynamics and the conflicting objectives 
employed by the different facilities and partners in the SC. Sharing information and 
implementing a proper SC control strategy are the keys to successfully achieve these goals. 

SCs are often categorised as push-based, pull-based or push-pull SCs. This is probably 
stemmed from the manufacturing revolution of the 1980s, in which manufacturing systems 
were divided into these categories. In push-based SCs, such as material requirements planning 
(MRP) systems, production and distribution decisions are based on long term demand forecast 
and products are pushed as quickly as possible through the channel, from the production side 
upstream to retailers downstream and hence control throughput and observe WIP from time to 
time. This characteristic may enable the system to reduce delivery lead time since many semi-
finished or finished products are available but also, it will lead to the inability to meet 
changing demand patterns and to the bullwhip effect and all its inefficiencies [1-3]. 
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In pull-based SCs, such as Kanban systems, production and distribution decisions are 
based on true customer demand rather than forecasted demand and SC members do not hold 
any excess inventory and only respond to specific orders. In pull-based supply chains usually 
result in significant reductions in system inventory levels, reduced costs, and better response 
to market changes. However, this system may not work well in multi-product environments 
and in environments with large demand variations. This in turn may result in significant 
backorders, longer delivery lead times, and higher late penalty costs [1-4]. 

In push-pull SCs, some stages of the SC, typically the initial stages are operated in a push-
based manner while the remaining stages are operated in pull-based manner. This hybrid 
control often compromises the conflicting performance characteristics of the push and the pull 
environments so that a better system performance can be anticipated. For advantages and 
disadvantages of the push and pull systems and other details see the literature [2, 5-8]. Of all 
the existing production control strategies, only the Hybrid Kanban-CONWIP will be 
considered in this paper. 

2. LITERATURE REVIEW 

Hybrid Kanban-CONWIP is a pull production control strategy that was firstly proposed by 
Bonvik et al. in 1997 [9] in an attempt to combine the control advantages of CONWIP (high 
throughput and limited WIP levels in the system at all times) with those of Kanban to limit 
excessive build-up of WIP in front of bottleneck stages (control of inventory levels at the 
individual stages). The mechanism of the Hybrid Kanban-CONWIP system is shown in Fig. 1 
where a limit known as work-in-process capacity (WIPCAP) is placed on the amount of 
inventory that may be in the whole system at any time by using CONWIP cards and a limit is 
placed on the amount of inventory in each stage (excluding the last stage) at any time using 
Kanban cards. When orders arrive at the final node and there are enough finished goods it is 
assumed that they will be immediately shipped to final customers. Production orders and 
required materials are then released to the first node (considering its on hand Kanban cards 
and the WIPCAP) where they will be pushed through the different stages in the SC till they 
are processed completely and leave the final node. 

 
Figure 1: Hybrid Kanban-CONWIP control mechanism [10]. 

A comparison of Kanban Control Strategy (KCS), minimal blocking KCS, Basestock 
Control Strategy (BSCS), CONWIP, and Hybrid Kanban-CONWIP was presented in [9]. 
These different pull production control strategies (PCS) were compared in a four-stage 
tandem production line using simulation. Each of the control policies was compared using 
constant demand and demand that had a stepped increase/decrease. It was found that the 
Hybrid Kanban-CONWIP strategy decreased inventories by 10 % to 20 % over KCS while 
maintaining the same service levels. The performance of BSCS and CONWIP strategies fell 
between those of KCS and Hybrid Kanban-CONWIP. Two papers proposed a generic pull 
model encapsulating the three basic pull control strategies, KCS, CONWIP and BSCS and 



Smew, Young, Geraghty: Supply Chain Analysis Using Simulation, Gaussian Process … 

 
180 

allows customised pull control strategies such as Hybrid Kanban-CONWIP to be developed 
[10, 11]. Simulation and an evolutionary algorithm were used to study the generic model. 
Details of the evolutionary algorithm were given in [10] while results on extensive 
experimentation on the effect of factors (i.e., line imbalance, machine reliability) on the 
proposed generic pull model were given in [11]. 

Kleijnen and Gaury [12] presented a methodology that was a stage wise combination of 
four techniques: (i) simulation, (ii) optimisation, (iii) risk or uncertainty analysis, and (iv) 
bootstrapping. The methodology was illustrated through a production-control study for the 
four-stage, single product production line utilised by [9]. They defined Robustness as the 
capability to maintain short-term service in a variety of environments i.e. the probability of 
the short-term fill-rate (service level) remaining within a pre-specified range. In their research 
work Kleijnen and Gaury compared four systems, namely KCS, CONWIP, Hybrid Kanban-
CONWIP, and Generic. The optimal parameters found in [9] were used for KCS, CONWIP 
and Hybrid Kanban-CONWIP and they used a Genetic Algorithm to determine the optimal 
parameters for the Generic pull system. For the risk analysis step, seventeen inputs were 
considered; the mean and variance of the processing time for each of the four production 
stages, mean time between failures and mean time to repair per production stage, and the 
demand rate. The inputs were varied over a range of ±5 % around their base values. They 
concluded that in this particular example, Hybrid Kanban-CONWIP was best when risk was 
not ignored; otherwise Generic was best and therefore, risk considerations can influence the 
selection of a PCS. 

Geraghty and Heavey [13] showed that under certain conditions the Horizontally 
Integrated Hybrid Production Control Strategy, HIHPS, favoured by Hodgson and Wang [14] 
is equivalent to the Hybrid Kanban-CONWIP production control strategy introduced by 
Bonvik et al. [9]. Lavoie et al. [8] conducted a comparison study of pull control mechanisms 
for unreliable tandem transfer lines producing a single product using a combined 
discrete/continuous simulation and considering “inventory & storage” holding and shortage 
costs. They observed that the Hybrid Kanban-CONWIP mechanism always outperforms 
CONWIP and Kanban when storage space and inventory costs are considered explicitly. 
However, Hybrid Kanban-CONWIP was equivalent to CONWIP and both outperform 
Kanban when storage space costs are not considered explicitly but rather aggregated with the 
inventory costs in the holding costs as usually done. 

In this research work, mathematical models applicable to a serial SC controlled by Hybrid 
Kanban-CONWIP are developed. These mathematical models are then translated into a 
discrete event simulation model using ExtendSim. Through a series of designed experiments; 
the devolved simulation model will be used to investigate the potential impact of the Hybrid 
Kanban-CONWIP control on the trade-off between the conflicting objectives of maximising 
customer service level and minimising average WIP. A software package, JMP, was used to 
construct the experimental design matrices, analyse the data, and develop the GP meta-
models. A multi-objective optimisation using the developed meta-models will be conducted 
by means of the Desirability Approach (DA) method, also the Pareto-Optimal Genetic 
Algorithm (POGA) will be used to conduct a simulation-based optimisation as well. The aim 
of this work is to provide a framework that could be used by SC managers to assess the 
suitability of a production control strategy to their system with high accuracy and 
computational efficiency. 

3. MODELLING A HYBRID KANBAN-CONWIP SUPPLY CHAIN 

The centralised Hybrid Kanban-CONWIP SC in this paper is a production–distribution 
system, in which the production line of each firm has a similarity to a “work center” being a 
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part of a “global line” of supply and also in which a virtual center of control governs the SC 
and manages the information and parts flow and the inventories along the chain. The 
proposed SC consists of four nodes in series representing 4 different firms (e.g.; a supplier, a 
manufacturer, a distributer, and a retailer). A WIPCAP is assigned to the entire SC in order to 
limit the inventory that may be in the system at any time by using CONWIP cards and also, a 
limit is allocated on the amount of inventory at each stage in the SC (excluding the last stage 
since the amount of parts in the entire SC can never exceed the inventory allowed in this 
stage) using Kanban cards. When orders arrive at the final node and there are enough finished 
goods they will be immediately shipped to customers and production orders and required 
materials are then released to the first node considering its production capacity constraints, its 
on hand Kanban cards, and the WIPCAP. The first node requires two authorisation cards: one 
from the second node (Kanban pattern) and another one from the last node (CONWIP 
pattern). Both cards are attached to the part and when at node 2 only the Kanban card is sent 
back to node 1 and the CONWIP card remains attached to the part until it reaches the finished 
good inventory of the last node and is delivered. If the supply of finished goods from the last 
node to customers is limited, a portion of the orders will not be fulfilled and will be 
considered as lost sales. 

3.1  Notations and Definitions 

i- Material flow variables 

  
 :  Pipeline (WIP) in node i in period t, where i = 1, 2, …, n 

  
 :  Finished Goods Inventory (FGI) of node i in period t 

  
 :  Shipments from node i to node i+1 in period t 

  
 :  Output from the pipeline of node i in period t 

  
 :  Input to the pipeline of the node i in period t 

ii- Information flow variables 

  :  Incoming orders to the SC at final node in period t  
   :  Orders placed by the SC to the first node in period t  
  :  Backlog of incoming orders in the SC in period t 
    :  Available number of CONWIP cards in the SC in period t  
    

 :  Available number of Kanban cards in node i in period t  
   

 :  Available total FGI in node i, in period t 

iii- Model parameters 

  :     Cycle (lead) time for a unit in the pipeline to arrive to the FGI of the node i  
    :     Maximum number of units to be processed in the node i (node capacity) 
      : Total number of CONWIP cards in the SC  
  :     Total number of Kanban cards of node i  

3.2  Model Formulation 

i- Shipments 
Incoming orders at the final node (  ), will be shipped to customers but the inventory 
constraints may effect these shipments. Therefore,   

 , is given by: 

   
     [   

    ] (1) 

Otherwise,   
  depends on    

 , the maximum number of parts to be processed in node     
during its lead time              , and the available number of Kanban cards in node    : 
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ii- Materials flow, WIP, and inventory  
Assuming that the initial conditions are known, then   

  and     are given by: 
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The available total FGI (   
 ) for node i in period t can be calculated as follows: 
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where: 
   

   
    
   (6) 

   
  {

                           

  
                          

 (7) 

iii- Orders 
    depends on the maximum number of parts to be processed in the first node during its 
cycle time          , and the available number of Kanban and CONWIP cards in node 1 
and is given by: 
        [   (

     

    [        
      

  ]     )   ] (8) 

     is the available number of CONWIP cards in the SC in period t and can be calculated as 
follows: 
             [ (∑     

  
    ∑     

  
   )    

  ] (9) 

iv- Performance Measures 
The performance measures for the Hybrid Kanban-CONWIP SC are the Average Inventory in 
the system (      and the Average Service Level (   ) achieved by the system after N 

periods of time: 
         

∑ [       ] 
   

 
 (10) 

        
∑ [     ] 

   

 
   (11) 

4. SIMULATION MODELLING 

Simulation modelling enables powerful “what-if” analyses to test several strategies and 
scenarios; on the other hand it permits the comparison of various operational alternatives 
leading to better future decision. The modelling phase starts after the supply chain is analysed 
and the key components and performance measures are identified [15]. The conceptual, 
mathematical model described earlier has been implemented in a periodic review simulation 
model using ExtendSim. The conventional modelling approach employed by ExtendSim is 
object oriented so; the translation of the conceptual model in a computer simulation model 
could be performed using library objects. The flow of items and information could be 
modelled by means of dynamic entities. In this work an advanced modelling approach based 
on programming code, tables and events generators is proposed. ExtendSim provides the user 
with the compiled simulation language Mod-L that can be used for writing codes. The SC 
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flow of dynamic entities, representing items and information, is substituted by information 
recorded in tables. Without dynamic entities flow all the simulation events are generated 
using event generator objects (provided by the library) and, in correspondence of such events, 
the code elaborate and update the information stored in tables. This modelling approach 
yielded a flexible, parametric and time efficient simulation model. 

5. META-MODEL DEVELOPMENT 

Gaussian Process (GP) models are increasingly used as surrogate statistical models for 
predicting output of computer experiments. Generally, GP models are both interpolators and 
smoothers of data and are effective predictors when the response surface of interest is a 
smooth function of the parameter space. GP prediction is simply a weighted linear 
combination of all output values already observed. The weights depend on the distance 
between the new input to be predicted and all the old inputs. A good introduction on GP 
emulators (metamodels), key steps in building them and how to design the experiments are 
given in O’Hagan [16]. GP models, also known as Kriging and Spatial Correlation, are global 
rather than local (i.e., fitted to data that are obtained form larger experimental space than the 
small spaces used in low order polynomial regression models) [17]. In 1989, Sacks et al. [18] 
developed the spatial correlation parametric regression modelling approach that predicts 
unknown values of deterministic simulation models. In stochastic simulations, this property 
disappears and averages of replicated observations are obtained for each scenario. GP 
interpolates these averages which are still random however, GP still attractive because it may 
decrease the prediction bias and hence the Mean Square Errors (MSE) at scenarios close 
together [19]. Mitchell and Morris [20] described the spatial correlation model that is 
appropriate for stochastic simulation responses as follows: 

              ∑   
 
       ( ∑    |       

 |
  

   )  (12) 

where               is a set of coefficients to be estimated. 
The standard design for computer experiments is space filling designs. These designs aim 

to fill the space with number of points (runs) so that the complete input parameter space is 
sampled. The usual space filling design for computer experiments is the Latin Hypercube 
Design (LHD) [21]. A LHD in   runs for   input variables is a       matrix where each 
column is a random permutation of levels          . In LHD, the possible number of runs of 
the simulator has to be selected first; a common practice for an effective initial number is 
       [22], and the range for each input variable is then divided into   equal sections or 
levels. The maxi-min criterion that maximises the minimum Euclidean distance between 
points in the design is used to produce a LHD with good properties [23]. 

A total of five independent variables (   ) will be considered for Hybrid Kanban- 
CONWIP SC: node capacity,       , total number of Kanban cards of node 1, node 2, and 
node 3. Each of these inputs will be varied over a selected working range as per the selected 
experimental design to investigate their impact on the conflicting SC performance measures 
(responses), customer service level and average WIP. In this study, the incoming orders to the 
SC (customer demand) is assumed to be a random variable follows a log-normal distribution 
with a constant mean demand of 4 items per period and a variable demand standard deviation, 
SD which will be considered at three different levels: a lower level of 1 item corresponding to 
a demand coefficient of variation (CV) of 25 %, a medium level of 4.5 (CV of 112.5 %), and 
a higher level of 8 items (CV of 200 %). Any node capacity will be from a minimum level of 
capacity of 8 units corresponding to a mean demand of 4 units per period and a cycle (lead) 
time of 2 periods for an item in the pipeline to arrive to the FGI of any node and a higher level 
of capacity of 24 items corresponding to three times the minimum available capacity. 
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Simulation runs were performed by changing the selected input factors one at a time in order 
to determine the best working range of the        and the total number of Kanban cards of 
nodes 1-3 that will enable us to extract as much information as possible from system. The 
selected ranges were decided to be from a minimum of 12 Kanban cards for nodes 1-3 and 20 
       cards to a maximum of 20 Kanban cards for nodes 1-3 and 135        cards. 

JMP, statistical and data analysis software developed by SAS Institute Inc. 
(www.jmp.com), was used to apply GP modelling to the output simulation data; construct the 
different LHD matrices in accordance with       and provided that all the possible levels 
of each input factor is considered, estimate the different terms of model (12) using the method 
of maximum likelihood estimation in order to fit, build, and validate the SC performance 
measures meta-models under SD = 1, 4.5, and 8. ExtendSim was also used to conduct the 
simulation experiments according to the constructed LHDs. For all experiments conducted: (i) 
simulation run-length was 11000 periods with a 1000 period warm-up run excluded which 
was sufficient for deleting the influence of nodes initial conditions, (ii) the average output of 
50 replications was taken for each response variable, (iii) the lead time is fixed, the same for 
all nodes, and has a value of 2 periods, and (iv) all nodes have the same node capacity value 
and will be varied according the specified working range. As an example, Table I provides a 
summary of the experimental design for SD = 8. 

Table I: Experimental Design Summary at Demand SD = 8. 

Factor Name Units Low  High   
A Node Capacity Units 8 24  
B WIP-Cap Cards 50 136  
C Node1Kanbans Cards 12 20  
D Node2Kanbans Cards 12 20  
E Node3Kanbans Cards 12 20  

Response Name Units Min Max Ratio 
Y1 Service Level % 83.3175 98.4118 1.1812 
Y2 Average WIP Items 44.1443 127.5539 2.8895 

To estimate the different terms of the GP metamodels (  ,    ,    , 
             h            and the Nugget term which stands for the noise or randomness in 
the simulation model, Eq. (12) was fitted to the simulation output data of the different 
generated LHDs by using the method of maximum likelihood estimation. JMP generates a 
model report summarising the                  and the estimated terms of the GP 
metamodel and also generates its actual by predicted plot. It is always necessary to examine 
the fitted metamodels to ensure that they provide an adequate approximation to the true 
system. The jackknife or leave one out procedure is used to generate Actual by Predicted plots 
as a measure of goodness-of-fit. As an example, the Hybrid Kanban-CONWIP SC GP 
metamodels at SD = 8 reports generated by JMP are presented in Table II, Table III, and Fig. 
2. 

Table II: Hybrid Kanban-CONWIP service level GP metamodel report at SD = 8. 

Column Theta Total 
Sensitivity 

Main 
Effect 

Capacity 
Interaction 

WIP-Cap 
Interaction 

K1 
Interaction 

K2 
Interaction 

K3 
Interaction 

Capacity 3.66E-06 2.62E-03 2.59E-03 - 3.21E-05 4.55E-11 3.16E-09 2.34E-10 
WIP-Cap 9.09E-05 9.87E-01 9.86E-01 3.21E-05 - 6.72E-05 6.04E-04 1.92E-06 
K1 2.58E-05 5.71E-03 5.65E-03 4.55E-11 6.72E-05 - 3.24E-09 1.60E-10 
K2 3.55E-05 4.05E-03 3.45E-03 3.16E-09 6.04E-04 3.24E-09 - 2.28E-10 
K3 8.07E-06 1.26E-03 1.26E-03 2.34E-10 1.92E-06 1.60E-10 2.28E-10 - 

µ 83.81     239.41 Nugget 0.0017624       

http://www.jmp.com/
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Figure 2: Hybrid Kanban-CONWIP SC GP metamodels actual by predicted plot at SD = 8. 

Table III: Hybrid Kanban-CONWIP Average WIP GP metamodel report at SD = 8. 

Column Theta 
Total 

Sensitivity 
Main 
Effect 

Capacity 
Interaction 

WIP-Cap 
Interaction 

K1 
Interaction 

K2 
Interaction 

K3 
Interaction 

Capacity 2.64E-03 4.33E-03 4.29E-03 - 3.69E-05 1.69E-06 3.59E-07 0.00E+00 
WIP-Cap 2.21E-05 9.88E-01 9.87E-01 3.69E-05 - 3.74E-04 4.62E-07 0.00E+00 
K1 1.38E-04 7.68E-03 7.30E-03 1.69E-06 3.74E-04 - 9.38E-10 0.00E+00 
K2 9.90E-06 6.92E-04 6.91E-04 3.59E-07 4.62E-07 9.38E-10 - 0.00E+00 
K3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - 

µ 44.80     4144.93 Nugget 0.0020133       
 

The different metamodels reports show how the considered performance measures are 
affected by each of the input factors as a main and total sensitivity effect under a specific 
demand SD. This main and total sensitivity effect percentage (%), if exists, reveals the 
amount of influence and importance an input factor have on the considered performance 
measure. By looking at the different actual by predicted plots it can be seen that the different 
points are scattered close the 45 degree diagonal line which reflects how accurately the 
models predict simulation outputs. In addition, examination of the Service Level and Average 
WIP trade-off curves of the developed meta-models and the simulation model using new 
different optimum scenarios for the Hybrid Kanban-CONWIP SC policy (as illustrated in Fig. 
3 in the optimisation section), reveals how accurately the fitted models predict simulation 
outputs. According to these results the developed models are statistically significant and will 
be considered valid and can be used for further analysis. 

6. OPTIMISATION 

A multi-objective optimisation problem with conflicting objectives implies that there is no 
unique optimal solution to the problem. Instead, a set of solutions can be obtained that are 
indifferent to each other such that no improvement can be found in terms of any of the 
objectives without resulting in deterioration of the performance of at least one of the 
objectives so, decision makers must make a judgment and find good compromises (trade-offs) 
among them to arrive at a particular decision. A set of such optimal solutions is known as the 
Pareto-frontier. These optimal solutions are non-inferior or non-dominated in the sense that 
there is no other solution in the search space superior than them when all the objectives are 
taken into consideration [24-26]. To generate a set of such non-dominated solutions, two 
different multi-objective optimisation techniques are considered in this research work; the DA 
to perform a metamodel-based optimisation and the POGA to carry out a simulation-based 
optimisation. 
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6.1  Solution using the Desirability Approach  

The Desirability Function Approach (DA) [27] was applied to the developed GP metamodels 
and the optimum input factors combinations that minimise the average WIP for targeted 
service levels were obtained. To build the trade-off curves for the Hybrid Kanban-CONWIP, 
the service level (at several possible targets) and the average WIP were optimised 
simultaneously for each selected demand SD. A two-sided desirability function was defined 
for each targeted service level as illustrated in the following example: 

    {

                                          
                                         
                                         

                                          

 (13)  

For the average WIP meta-models the goal is always to minimise them and their one-sided 
desirability function can be defined as in the following example (average WIP meta-model 
under SD = 8: 

    {

                                        
                                        

                                        
    (14) 

The desirability approach is implemented JMP statistical software package and can be 
applied by selecting a goal for each response and then by setting the lower and upper limits 
for each goal, the software will search the design factors space, using the fitted models, and 
will generate a list of potential optimum factor settings (GP-DA solutions) that meet the 
defined criteria. 

6.2  Solution using Genetic Algorithm 

GA is a search algorithm for optimisation that begins from a set of randomly generated 
potential solutions (chromosomes). GA makes this initial population evolve through 
successive iterations (generations) towards a population that is expected to contain the 
optimum solution [10]. The Pareto-Optimal Genetic Algorithm (POGA) code for ExtendSim 
developed by [25] was applied directly to the simulation model of this work to find the set of 
non-dominated solutions (SIM-POGA) in a discrete space comprised of 5 decision variables 
(e.g. for SD8: WIPCAP with a range of 50 to 136, nodes 1, 2 and 3 Kanbans with a range of 
12 to 20, and node capacity with a range of 8 to 24) for an objective vector comprised of 2 
components; average service level to be maximised and average WIP to be minimised. 

Therefore, the aim is to find the set of pareto-optimal solutions so that:  

 
                  (  )         (  )  

         (  )         (  )   
  (15) 

where: Ni = {Node Capacity, WIPCAP, Node 1 Kanbans, Node 2 Kanbans, Node 3 Kanbans}, 
            S = Service Level, and W = Average WIP. 

6.3  Optimisation results 

The actual simulation outputs (SIM-GP-DA) as estimate refinements of the resulted 
optimal solutions (GP-DA); which is improving the accuracy of the estimated optimal 
solutions through experimentation with the simulation model under the parameters found to 
be “optimal” for given Service Level targets, also, the resulted optimal solutions SIM-POGA 
are illustrated in the trade-off curve shown in Fig. 3 as an example for SD = 8. The percentage 
deviations (errors) between each of the metamodels based optimisation approaches (SIM-GP-
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DA) and the simulation based approach (SIM-POGA; as the solutions from this method are 
the most accurate and generated from applying the POGA directly to the SC simulation 
model) for the Hybrid Kanban-CONWIP SC are presented in Table IV and Fig. 4 as an 
example for Demand SD = 8. 

 

Figure 3: Hybrid Kanban-CONWIP SC GP trade-off curve for SD = 8. 

Table IV: Percentage deviations from SIM-POGA of Hybrid Kanban-CONWIP SC for SD = 8. 

Scenario  
Number 

  
SL Target 

SIM-GP-DA 
Error SL Error WIP 

1 84±0.5 -0.152 % -0.344 % 
2 86±0.5 0.053 % -0.050 % 
3 88±0.5 -0.236 % -1.166 % 
4 90±0.5 0.228 % -2.142 % 
5 92±0.5 0.448 % -1.773 % 
6 94±0.5 0.008 % -2.854 % 
7 96±0.5 0.074 % -2.778 % 
8 98±0.5 0.041 % -1.807 % 

 
Figure 4: Errors analysis of the Hybrid Kanban-CONWIP SC at SD = 8. 

 
It can be seen that the errors result from estimates of average WIP are higher as opposed 

to service levels However, the GP metamodels can be considered very accurate and gave 
superior approximation to the SC simulation model under different demand SD. The level of 
inventory is the main warning sign in any SC therefore, how much inventory is being held to 
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achieve targeted customer service levels at an acceptable price is very important issue to 
understand. The Hybrid Kanban-CONWIP SC trade-off curves shown in Fig. 3 can 
effectively be used to attain a sense of balance between the conflicting objectives as there is 
gain along one dimension and loss along the other one. Furthermore, the relationship between 
this two conflicting objectives is not a straight line; increasing service level gives an 
exponential curve relationship in the extra stock to be carried. For example, it can be seen that 
there is a huge increase of an average of 65 % in WIP for an increase of 5 % in service level 
(when moving from 93 % towards a high 98 % service level). It is clear that the increase in 
average service levels is coming at the cost of increase in average inventory levels. The 
decision of whether such a trade-off is acceptable depends on the cost of the inventory, cost of 
lost sales and several other aspects that need to be considered before making a decision by the 
supply chain managers. 

7. CONCLUSIONS 

The aim of this research was to provide a framework that could be used by SC managers to 
assess the suitability of various production control strategies to their system with reasonably 
high accuracy while being computationally efficient. Simulation optimisation is possible by 
embedding an optimisation algorithm such as the POGA within the developed simulation 
model; however the technique can take substantial computer time and may be impractical for 
relatively small problems. If the initial effort for building metamodels is undertaken, then the 
process of finding an optimum, or at least, a set of good solutions, can be made easier (as the 
use of metamodels can significantly speed-up the search for an optimum, given the initial 
overhead of developing these metamodels). In this paper, this methodology has been used to 
generate trade-off curves for a Hybrid Kanban-CONWIP controlled serial supply chain 
subjected to high demand variability. A trade-off curve can be used to assess the cost (in 
terms of inventory levels) of providing higher service levels and to determine the operational 
parameters of the production control strategy. This eliminates the need for a priori knowledge 
of the solution domain as is required for single objective optimisation approaches that require 
the setting of fitness values or weights and, thereby, cause the solution to be partly a result of 
decisions taken to determine such weights. 
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