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Abstract 

A visual cutting chip control system is designed to automatically adjust feed rate in order to maintain 
constant surface roughness in ball-end milling. The proposed visual control system has a modular 
structure, consisting of an optical vision system (OVS), an adaptive cutting chip size-control loop for a 
feed servo and a surface roughness in-process prediction model. The OVS is employed to acquire the 
cutting chip sizes form the camera. A division controller is used to control the chip size by modifying 
the feed rate and consequently maintaining surface roughness constant. Surface roughness is predicted 
based on the detected chip size. The efficiency of the chip control strategy is tested by series of 
simulation with various step changes in the cutter/workpiece contact area. For simulation purposes an 
experimentally validated milling plant simulator with an adopted feed servo drive model and a cutting 
chip size model is employed. An adaptive neural inference system (ANFIS) is established to 
effectively simulate the cutting chip size in ball end-milling. In simulation, the reference chip size and 
consequently the reference surface roughness are well maintained when the cutting-depth profile of a 
workpiece is varying step-wise or continuously. 
(Received in September 2014, accepted in March 2015. This paper was with the authors 2 months for 1 revision.) 
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1. INTRODUCTION 
 
Surface roughness is a main factor in monitoring the surface quality of a machined part in 
wide spread end milling processes. Surface monitoring is usually carried out by manually 
examining the machined surfaces by using surface stylus devices. According to Al-Kindi and 
Shirinzadeh [1], this procedure is time consuming, labour intensive and inaccurate due to 
disturbances from the surroundings. 
      To assure that the surface roughness of a machined part is within the defined tolerances, 
an in-process measuring system must be implemented. The output of the in-process 
measuring system is feedback to adaptive control, which is used to maintain the reference 
surface roughness. In the past some in-process measuring systems have been developed to 
determine the surface roughness of the machined piece. In optical systems [2], surface 
roughness is predicted according to the determined relation between surface image properties 
and surface roughness. One system uses fibre-optics to measures the diffuseness of the 
reflected light from the surface [3]. Another system employs a machine vision system to view 
the machined surface and send the digital data to computer for analysis [4]. Kamguem et al. 
[5] demonstrated that roughness parameters (Ra, Rt and Rz) can be estimated by using only 
image-extracted features. Lu and Tian [6] used light scattering techniques to realize the online 
prediction of machined surface roughness. Two non-optical methods were also developed. 
They are based on an inductance pickup and a capacitance probe [7]. Due to disturbances 
from the fierce machining environment the accuracy of these systems is not sufficient [7]. For 
milling process, only one applicable non-contact technique to measure roughness in-process 
has been reported [8]. It employs an acoustic-based ultrasonic sensor for surface monitoring 
in face milling. The surface roughness is measured by sensing the intensity of ultrasonic 
beams reflected from the machined surface. Unfortunately, this technique was also found to 
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be unsuitable for its in-process use in the production environment due to the inconsistent 
accuracy and an expensive sensor [9]. 
      In recent years, the research efforts to increase quality of machined parts are directed 
towards developing of adaptive control systems which contain reliable in-process models [10] 
that can precisely predict surface roughness. An adaptive control with the on-line surface 
roughness prediction model could be capable of controlling the surface roughness in real time 
[11]. Some systems with designed mechanism to control the surface roughness have been 
developed for turning operations [12, 13], with only a few for milling operations [14]. 
      Due to end milling process complexity, the surface roughness is very difficult to model 
[15]. This is the main reason why all the research efforts for developing a reliable and 
applicable model based adaptive control system failed. 
      Lately, research efforts are focused to the development of indirect surface roughness 
monitoring systems. Huang et al. [16] presented the application of a neural network algorithm 
in an in-process Pokayoke system to perform the adaptive surface roughness control in end 
milling operations. Kirby et al. [17] developed an in-process surface roughness adaptive 
control system for a turning operation, using a fuzzy-nets modelling and tool vibrations 
measured with an accelerometer. Zuperl and Cus [18] employed in his model reference 
adaptive control system (MRAC) a dynamometer as an in-process sensor to indirectly control 
the surface roughness. The same technique was also applied to the turning process [19]. 
      In order to replace the expensive dynamometer, a novel visual control of cutting chip size 
is proposed in this research. The cutting chip size control was adopted to maintain surface 
roughness constant in order to increase the quality of end-milling process. No research efforts 
have been dedicated so far to develop methodologies for controlling of the cutting chip size in 
milling. The control strategy capability is demonstrated by simulation with various step 
changes in the cutter/workpiece contact area. For simulation purposes the experimentally 
validated milling plant simulator with the surface roughness prediction model is employed. 
By combining divisional control model and milling plant simulator, a novel chip size control 
simulation of ball-end milling is developed. 
      The rest of the paper is organized as follows. The proposed visual chip size control system 
is described in Section 2. Section 3 covers the chip size control simulator of ball-end milling 
and the simulation set-up. Finally, sections 4 and 5 present simulation results and conclusion. 
 
2. VISUAL CONTROL OF CUTTING CHIP SIZE 
 
The basic idea of this research is to create a visual control as an observation technique of the 
cutting chip geometry. The objective of the proposed control is therefore to adjust the feed 
rates and maintain the cutting chip size constant in order to achieve the desired value of the 
machined surface finish. Fig. 1 shows the basic structure of the chip size control. The proposed 
system consists of five main parts. The first part is a reference model (Block B1). Its input is 
the desired surface roughness Raref and the output is the desired chip size CSref. The model is 
developed from a set of data obtained during actual machining tests performed on a Heller 
milling machine using surface roughness tester and the vision system. 
      The second part of the proposed system is the milling machine with a Fagor computer 
numerical control (CNC) unit. The milling machine is combined with the optical vision system 
(part 3) for assessing the chips size. The output of the optical vision system together with the 
desired chip size is sent to the system controller (part 4). The measured chip size signals are 
used in the controller to indirectly regulate the surface roughness (Ra). The controller adjusts 
the feed rate by assigning an override percentage to the CNC controller based on the 
measured chips sizes. The feed rate command fc is the product of the feed rate override 
percentage command fc% and the pre-programmed feed rate. 
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Figure 1: The cutting chip size control structure. 
 
      Finally, the last part of the system is a B2 block. This block predicts in-process the surface 
roughness (Ra) of the machined surface based on measured chip size signals. 
      The following algorithm is developed to attain the Raref by controlling the chip size: 
1. The Raref is initiated, 
2. Based on desired Raref  the reference chip size CSref is determined according to the block 

B1, 
3. When the CSref is known, the feed rate override command value fc% is determined, 
4. The chip size detection and analysis is performed by the optical vision system; chip size 

running average (CSA) is calculated, 
5. The CSA is compared with the CSref and the quotient is sent to the system controller, 
6. Based on the measured chip size the actual Ra is determined and displayed on the control 

panel according to the block B2, 
7. The controller adjusts the feed rates and sends the new command fc% back to the CNC 

control unit, 
8. Steps 4 to 8 are repeated until the end of machining. 
      The flow chart of the OVS algorithm is shown in Fig. 2. 
 
2.1  Chip size detection 
 
The developed OVS is adapted to milling and a special program was developed to acquire the 
cutting chip geometry. The program for the detection of recorded chip images was designed in 
Vision Builder (VB). The developed program is executed in 8 steps: image acquisition, image 
calibration, image preparation, image tresholding, image filtering, object detection, variable 
setting (number of chips, chip size) and image displaying. 
      The simulated method of image capturing is defined in Step 1 (Image acquisition). The 
settings for the measurement of the chip geometry are set in Step 2 (Image calibration) 
Calibration of the image is made on the basis of a known distance between the two pixels and 
their coordinates on the reference image. A calculated ratio enables the measurement of the 
chip size to an accuracy of 7 µm. 
      The purpose of the Image preparation process (Step 3) is to prepare the chip image for the 
process of image thresholding. The Extract-HSL function changes the 32-bit RGB image to 
the 8-bit grayscale HSL image. By adjusting brightness, contrast and gamma the differences 
between the analysed chip and the background are highlighted. By defining the Region of 
Interest (ROI), the analysed area on the image is determined. Figs. 3a and 3b show the image 
of the captured chip and the effect of image preparation process. 
      The Image tresholding (Step 4) converts the 8-bit grayscale chip image into a binary 
image where logic value of all pixels within the selected interval (45-255) is set to 1. These 
pixels are treated as white particles or objects of analysis (Fig. 3c). All remaining pixels in the 
range from 0 to 45 are assigned a value of 0 and the method treats them as black background 
or noise. These were removed with space filters and filtering process (Step 5). The Space 
variant Median filter (3×3) is used to smooth the chip shape and to remove the small 
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interfering particles. The remaining distracting information on the image is removed by a 
morphological operator. 
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Figure 2: Flow chart of the chip size control algorithm. 
 
      Fig. 3a shows the original captured image of the chip after setting the exposure time and 
gain. Fig. 3b shows the chip image after preparation and Fig. 3c shows the result of 
tresholding. The arrows indicate the interfering particles that are removed by filtration. After 
filtration, the image is ready for analysis. In step 6 (object detection), the algorithm locates the 
objects of homogeneous intensity. The minimal and maximal size of the chip which will be 
detected is defined. The objects that touch the edges of the region of interest are excluded 
from analyses and the holes on the detected chips are filled. The detected chips are displayed 
on a screen, numbered and arranged in order from the largest to the smallest. The chip 
position, dimensions and surface area (chip size) is determined. 
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Figure 3: Processing of the detected cutting chip image. 
 
      The information transfer between the OVS and the system controller is made through six 
system variables. These variables created in step 7 are: Chip number, Chip size [mm2], CS2 
(size of the 2nd largest detected chip) [mm2], CS3 (size of the 3rd largest detected chip) [mm2], 
CS4 [mm2] and a variable CHIP (image of the detected chip). The variable Chip number 
contains information on the number of detected chips. The variable Chip size provides 
information on the size of the largest detected chip. The system variables are linked to many 
indicators for numerical and graphical display on a control panel of the chip size control 
system (Fig. 4). In the last step, the program displays the image of the detected chips on the 
control panel. 
 
2.2  Calculation of the chip size running average 
 
In each iteration, the OVS simultaneously detects a large number of chips. The detected chip 
sizes vary; therefore calculation of the chip size running average is necessary. Calculation of 
the chip size running average is carried out by shift registers and system variables (Chip size, 
CS2, CS3, CS4, Chip number). The system variables provide information on the size and the 
number of detected chips in particular iteration of detection. With the shift registers the sum 
of the current chip size with the values from the previous iterations is performed. In registry 
stored new sum of all performed measurements is finally divided by the number of predefined 
samples (25). The result is the value of the chip size running average (CSA), which is 
associated with the display indicator on the OVS control panel. The CSA value is transmitted 
to the system controller. 
      Fig. 4 shows the control panel of the proposed chip size control system. The limits of the 
reference chip size area are entered into the system by two graphical sliders in an upper part 
of the control panel. Two warning indicators inform the operator about the inadequate size of 
the chip. The OVS button switches between manual and automatic mode of working. An 
image with the detected chips and a diagram with the values of the CSA are displayed in the 
middle part of the control panel. The diagram also displays the current size of the detected 
chip and the allowable area of the chip size. Above the diagram, the user enters the parameter 
to calculate the CSA. 
 
2.3  System controller design and implementation 
 
The system controller based on the CSA and determined CSref adjusts the feed rates to ensure 
optimum machining. The reference model provides information about the CSref. When the 
CSA exceeds the allowed deviation of the chip size the system with indicators alerts operator 
of improper feed rates and adjusts them. 
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Figure 4: Control panel of the chip size control system. 
 
      In this study two controllers were tested. Their block diagram is presented in Fig. 5. A 
step controller in 10 % increments decreases or increases the feed rate override percentage 
until the average size of the chip is not within the desired size range. The step controller has a 
rapid response, and it is very easy to implement. The second used controller is the division 
controller. Its structure is a bit more complicated, but still provides fast response times. When 
adjusting the feed rate it considers a linear correlation between the CSA and the fc%. The new 
command of feed rate override percentage fc%(t) is adjusted according to eq. (1): 

)(
)1()( %% tCSA

CSreftftf cc            (1) 

      In calculating the new commanded feed rate override percentage the previous command 
of feed rate correction and the ratio between the CSref and the CSA from current iteration is 
considered. 
      The stability analysis of the divisional controller is evaluated by simulations with various 
step changes in the cutter/workpiece contact area. The system is found out to be stable in all 
the simulation tests, except in cases where the CSA approaches to zero. By limiting the 
controller commands the problem of the unacceptably large feed rate corrections for very 
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small chips is eliminated. By simulations, the optimal value of the controller sample period is 
determined. Sample period of 110 ms ensures that the measured value of chip size 
corresponds with feed rate command from the previous iteration. During all simulation tests 
the controller manages to return the CSA to the reference chip size within 0.4 s. 
 

 
Figure 5: Cutting chip size control simulator. 
 

3. CHIP SIZE CONTROL SIMULATOR 
 
The overall simulation block diagram of the proposed visual control system is presented in 
Fig. 5. It simulates the Ra of the machined part by enabling the regulation of chip size. The 
input to the block diagram is the Raref and the output is the simulated Ra. The control 
simulator with the corresponding models was developed in Matlab Simulink. Simulator 
consists of blocks representing the reference model, the system controller, a milling plant 
model and the surface roughness prediction model. These four elements describe the 
dynamics of the control simulator. 
      The main focus of this research was dedicated to the development of the milling plant 
model. The purpose of this model was to design the chip size controller without expensive 
and time consuming machining tests. The system controller design is described in the 
previous chapter. The milling plant model is a feed drive simulator which includes the chip 
size model (milling process model), servo-control system, a model of CNC controller and 
chip size conditioning measurements. The adjusted feed rate command is the control signal to 
the milling plant model and the chip size (CS) is the model output signal. 
      Fig. 5 outlines the milling plant model. The milling plant can be represented as a product 
of two transfer functions: 
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where CS is cutting chip size [mm2], n is natural frequency of anti-aliasing filter,  is 
damping coefficient, CSANFIS is continuous static signal of the chip size [mm2], fc is feed rate 
command [mm/min], f is actual feed rate [mm/min], ts is the time constant of the servo control 
system [s] and tm is the respond time of the servo controls to the commanded feed signal – 
time delay [s]. 
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      The transfer function HS of the machine dynamics was derived based on the 
manufacturer`s technical data of the machine tool Heller BEA 02 controlled by the Fagor 80-
40-M CNC system. This approximated transfer function simulates the feed servo-drive 
response to changes in the commanded feed rate. The appropriate-actual feed rate for a 
specific cutting situation is provided via the fc% commands ranging from 0 to 120 %. 
      To verify the dynamic feed servo-drive model defined with Hs the experiments were 
carried out. In step cutting experiments, the input feed rates (5, 10, 15 and 20 mm/s) were 
overridden from 0 to 120 %. The results showed a good agreement between the experimental 
and simulation step responses of the feed-drive system. The average time constant ts of the 
step cutting experiments were measured to be 107 ms and the difference from the mean values 
obtained by simulations was less than 4 %. 
      In a first attempt, a mathematical model developed by [20] was used to simulate the size 
of the cutting chip. In the mathematical model, the chip is restricted by four surfaces; 
therefore four equations are used to define the chip shape with each equation representing one 
surface. The Matlab software was used to plot the simulated chip image and to calculate the 
cutting chip size. The calculated chip size was compared with measured CSA obtained by the 
vision system. It was found out that the average difference between detected cutting chip size 
and simulated one is less than 32 %. Test results discovered inaccuracies in modelling of the 
small size chips. Another major disadvantage of mathematical modelling of chip geometry is 
complex and time-consuming making of the model. 
      The above mentioned disadvantages were eliminated by applying an Adaptive Neuro-
Fuzzy Inference System (ANFIS) to predict the size of cutting chip in end milling. The ability 
of ANFIS modelling method to capture the relations between cutting conditions, tool 
geometry and cutting chip size in an extremely short time has encouraged us to use this 
method for chip modelling [21]. The method was able to develop the chip size model on-line, 
during machining in few seconds. This is a non-linear static model, built based on 
experimental tests. It was incomparably faster than the mathematical model and was easy to 
implement to the plant model simulator. The prediction error of the trained model is less than 
9 %. 
      The basic ANFIS architecture employed to predict the cutting chip size is shown in Fig. 5. 
The selected fuzzy inference system has 5 inputs and one output. The input set consists of 
cutting conditions (1 – feed rate, 2 – cutting speed, 3, 4 – axial/radial depth of cut) and 5 – the 
cutting tool diameter (D). The output is cutting chip size (CSANFIS). The connections between 
the inputs and output were first captured during training with a neural network and then 
expressed in a form of fuzzy rules. A first-order Sugeno fuzzy model with triangular 
membership functions were selected for training. A combination of a gradient descent method 
and a least-squares method was selected to tune parameters of the membership functions. The 
training and testing process was carried out simultaneously during machining tests. The sizes 
of the chips were measured during machining. Two-thirds of 873 captured data pairs were 
used for training and the rest for testing. The modelling process was stopped when the 
prediction testing error has dropped below 9 %. Approximately 500 iteration of training was 
conducted. The 41 fuzzy if-then rules were generated to predict the cutting chip size. The 
complete milling plant model must also include the conditioning of the optical chip size 
measurement. This is achieved by a second order low-pass anti-aliasing filter with the natural 
frequency n and the damping coefficient . Therefore, the milling process and the 
conditioning transfer function can be expressed according to eq. (3). 
      The noise model (Fig. 5) introduces a random disturbance into the simulation and ads a 
greater realism to the simulation. It represents the unmodelled dynamics of the milling 
process and the chip detection process. The unmodelled dynamics is formed by random 
values that match with fluctuations of the measured chip size values. 
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      The simplified model using only the cutting conditions and the cutting chip size is 
employed to simulate the Ra. Statistical modelling is employed to provide functional relations 
between the Ra, CS, cutting conditions and diameter of the cutter (D). The experimentally 
obtained surface roughness prediction model is expressed by: 
 

125654321 .xx
D

x
D

xxx
a eDRAvfSC  R         (4) 

      Six coefficients in the model were identified by the pre-process machining tests. The Ra is 
predicted mainly by utilizing the normalized cutting chip size parameter, which is found out 
to be the most significant. The experimentally determined relations of the Ra and the CS have 
the same trend. The prediction model is obtained at 91 % confident level. Despite of its 
simplicity, the model is reliable and efficient to predict the Ra in-process by utilizing the CS. 
 
4. SIMULATION RESULTS AND DISCUSSION 
 
The efficiency of the control system is tested by series of simulations under various cutting 
conditions. They are performed in the presence of random process disturbances simulated by 
the noise model. The constant chip size control simulation is performed under the variable 
cutting depths to demonstrate the influence of the variable depth of cut on the CS. 
      The chip size control is evaluated through tree simulation cases: constant cut, step cut and 
ramp cut. Therefore, the shape of a virtual workpiece is composed of three parts. 
      The first part of the virtual workpiece (Fig. 6) is designed to analyse crossing of a tool 
with a constant cutting chip geometry (constant cut, AD = 4 mm). The step part allows testing 
the efficiency of the divisional controller in the presence of a sudden change of the axial depth 
of cut (step cut AD = 9 mm). The ramp part of the workpiece is designed to simulate the linear 
increasing of cross-section of the chip. 
      The goal of the simulation is to maintain the Raref constant by eliminating the difference 
between the desired chip size and simulated CS. The chip size control simulation is activated 
by setting the Raref. The Raref for the simulation shown in Fig. 6 is set to 1.8 µm. An allowed 
control error is set to be less than 5 % of the Raref. The CSref is determined according to the 
block B1. The CSref is set at 3.1 mm2 with 0.3 mm2 of allowed control error. 
      When the CS is above the upper limit of the allowed cutting chip size control error, the fc% 
must be reduced. On the contrary, if the CS is below the lower limit, then the feed rate must 
be increased. 
      The initial cutting conditions are determined according to the cutting conditions prediction 
model (see, Fig. 5). In this model, 16MnCr5 steel is selected for the work-piece material. The 
spindle speed is set at 1000 rpm, and the axial depth of cut is programmed to undergo step 
and continuous changes from 4.5 to 9 mm. The radial depth of cut is set to one half of the tool 
diameter. The simulation is conducted out for a 16 mm ball end-mill tool equipped with two 
inserts. The preprogrammed feed rate is set to 850 mm/min. The feed rate can be overridden 
from 450 to 1020 mm/min. 
      The simulation test is made first without and then with the chip size control action. The 
final result of the simulation is the value of the CS and the Ra. The simulation results are 
shown in Fig. 6. 
      During virtual machining of the first part of the workpiece (part A-B) without the feed rate 
adjustment, the Ra changes from 1.73 to 1.88 µm. 
      Fig. 6a shows the output response signal of the Ra. 
      Fig. 6f is the corresponding response of the CS. The CS varies between the value 1.6 and 
4.7 mm2. It is evident that the trend of the CS is similar to that of the Ra due to the noise 
model. 
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Figure 6: Simulated chip size control response to the various changes in the cutter/workpiece contact 
area. 

 
      The controller is switched on at the position B. First, the controller increases the feed rate 
up to 930 mm/min. With the activated chip size control, after the transitional stage, the feed 
rate is below the feed rate value of 859 mm/min for the rest of the part B-C. The CS is 
constant during virtual machining with 4.5 mm axial depth of cutting. Figs. 6 f, g show the CS 
variations without and with control action. 
      The maximum CS is 3.5 mm2 during the pass of the tool from point B to point C. 
      At the position C, where the tool encounters the 4.5 mm step, the feed rate decreases 
abruptly to maintain the CS at the reference value. In the section of the step part (part C-D), 
the feed rate drops to the value between 320 and 540 mm/min to support the chip size average 
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at 3.1 mm2. Fig. 6h shows the change of the CS. A very large peak of the CS appears when the 
tool partially encounters the 4.5 mm step of the virtual workpiece. The controller is able to 
compensate the induced perturbation. The axial depth of cutting in this section is 9 mm. Fig. 
6c shows the output response of the Ra on the step variation of the cutting depth by 
employing the CS control. Fig. 6m shows the feed rate response for this case. 
      At the position E, where the axial depth of cutting drops, the feed rate increases suddenly 
to keep the CS at the desired range. When the cutting tool starts to leave the step, the CS 
signal is interrupted by vibrations triggered by a high value of the feed rate. The CS is evolved 
between 0.5 and 4.2 mm2. When the tool completely leaves the step, the feed rate control 
signal increases to 861 mm/min. The upper feed rate limit is set to 1020 mm/min. 
      By continuously adjusting of feed rate in the segment of the ramp part (part D-E), the CS 
is maintained constant so that the Raref can be reached. As the AD increases continuously, the 
feed rates decrease accordingly and thus maintaining the Ra at the reference value. The 
variation of axial depth of cut is accurately compensated. The simulation demonstrates that Ra 
can be maintained constant by controlling the cutting chip size. 
 
5. CONCLUSION 
 
In this paper, the visual control of cutting chip size is employed to maintain the surface 
roughness constant during ball-end milling. The efficiency of the chip size control strategy is 
tested by a series of simulations. The stability analysis of the system controller is evaluated by 
simulations with various step changes in the cutter/workpiece contact area. The milling plant 
model was developed by integrating the CNC model, the feed servo dive model and the 
cutting chip size model. The study's main findings are summarized below: 
· The cutting chips were timely detected by the optical vision system. 
· The chip size running average (CSA) was successfully used to control the machined Ra. 
· Statistical modelling is successfully employed to provide functional relations between Ra, 

CS and cutting conditions. The statistical model is economical and more efficient than the 
existing in-process surface roughness measurement techniques. 

· The ANFIS method is employed to predict the cutting chip size in ball-end milling. The 
ANFIS model was much faster than the mathematical model and was easy to implement to 
the milling plant model simulator. 

· The simulation results show that the applied division controller is efficient and stable under 
variable cutting conditions that are typical for ball-end milling. 

      The proposed visual control of the cutting chip geometry provides a novel way for 
modelling and control of surface roughness in machining processes.  
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