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Abstract 

The paper assumes that the accident occurrence time is stochastic and emergency supplies is 

perishable, then two replacement stochastic models based on remaining lifetime and remaining 

quantity are first proposed. In order to identify the effectiveness of replacement strategy, two 

replacement-based stochastic models are compared with the general stochastic model that is 

non-replacement, measured by inventory level and total costs. A discrete-event simulation model is 

developed to demonstrate effects of occurrence time uncertainty, replacement ratios and distributed 

functions in occurrence time and demand. Sensitive analysis shows that the optimal decision is more 

sensitive to remaining quantity ratio as compared to remaining lifetime ratio. The paper shows that 

when decision-makers ignore occurrence time uncertainty and limited warehousing time, they may 

significantly miss better decisions. Further, simulation results demonstrate that different distributed 

functions in both occurrence time and demand lead to different inventory strategies. 
(Received, processed and accepted by the Chinese Representative Office.) 
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1. INTRODUCTION 

Although civil aviation accident is event of small probability, the losses and fatalities are 

serious. For example, there were 92 accidents and 474 fatalities last year, which leads to big 

losses for companies and society. According to safety report from International Civil Aviation 

Organization (ICAO), about 70 % civil aviation accidents occurred around the airports, so the 

ICAO formulated a series of regulations for emergency supplies in the airport. The airports 

always reserve much more emergency supplies and replenish emergency supplies 

immediately after emergency response. Therefore, investments in airport emergency supplies 

are significant and a cause of financial concern and subsequent economic losses. Thus, 

minimizing the losses and the costs, while maintaining the constraint of service level, is the 

main purpose of the airport. 

   In this paper, we first propose replacement strategy and develop an integrated model of 

occurrence time uncertainty and limited warehousing time, capturing the effects of occurrence 

time uncertainty and replacement strategy on service level and total costs. Our designs of 

alternative inventory system are derived from two sources: (1) observations of emerging 

practices in returns processing and (2) previous researches on emergency supplies inventory 

management. We analyse a benchmark system where an airport emergency planner decides 

the inventory level with replacement strategy to minimize the total costs. We find that the 

inventory level in this benchmark system is not always higher or less than that in 

non-replacement setting. To understand how occurrence time uncertainty affects the inventory 

level, we setup the model with deterministic occurrence time and unlimited warehousing time, 

concluding that consideration of occurrence time uncertainty and limited warehousing time 

induces or reduces emergency inventory. 

mailto:pxzhao@sdu.edu.cn
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   Researches on emergency supplies management obtain many achievements in preposition, 

optimal inventory, planning and distribution [1-4], and help reduce losses of life and property 

in practice [5-8]. Emergency means uncertainty, so stochastic models, with stochastic lead 

time, demand, supply, procurement cost, transport cost etc., were proposed to fulfil purposes 

of minimizing cost and maximizing satisfaction degree of people in affected areas [9-10]. 

Paper [11]
 
set up a three-level model containing supply, storage and demand for the 

emergency planning at the preparation and response stage, and the objective of this model is 

minimizing the social cost. Research
 
[12] proposed a coordination system among emergency 

warehouses. In this system, a stochastic model was built with constraints of service egality, 

traffic congestion and response time. In [13], authors
 
established a stochastic model to decide 

optimal storage time. Pan et al. [14]
 
proposed a stochastic inventory model with stochastic 

occurrence time, stochastic demand and perishable emergency supplies. 

   Civil aviation emergency decision is a prospective issue, but return and replacement of 

emergency supplies is insignificant, except for commercial products [15]. In [16], authors 

came up with a novel reverse logistics system for post-disaster debris capable of 

systematically minimizing total reverse logistical costs, risk-induced cost and psychological 

cost. The effectiveness of the proposed system was demonstrated by applying it to a case 

study of Wenchuan earthquake. Paper [17]
 
proposed an effective location models for sorting 

recyclables in public management, and provided an optimal location planning design for 

recycling urban solid wastes given the uncertainty future outcome of economic factors, 

consumer behaviour and environmental awareness. Paper [18] described an exploratory study 

of reverse exchange systems used for medical devices in the UK National Health Service. 

   Emergency management for civil aviation mainly includes designing information systems, 

simulation of emergency evacuation, and formulating emergence planning. Paper [19] 

analysed Singapore Airlines Flight 006 aircraft accident in 2000, and suggested that plan, 

execute, and support systems are important for medical emergency supplies in airport. Pan 

and Guo [20] studied the compensation mechanism based on bargaining game strategy on the 

background of MH370. In [21], authors proposed an accident rescue model for railroad 

system, and considered the uncertainty of demand, idle probability of ambulance, and risk 

level in a section of railway. Similarly to railway rescue system, the airport rescue systems are 

couple with uncertainty. ICAO stipulates that the airport should reserve emergency supplies 

to enhance response capability. The emergency supplies include alcohol, blood, plasma and 

some other perishable medical materials [22]. Inventory management of perishable products 

also has attracted much attention [23-25]. 

   Emergency decisions for disasters need to be capable of adapting to random and highly 

dynamic change [26], and decision-makers have a growing interest in improved strategies 

from reverse logistics [27]. Thus, a significant difference between our model and previous 

research on emergency supplies management is that we introduce the replacement strategy 

facing occurrence time uncertainty into the inventory control system. The optimal inventory 

levels and total costs of models are compared to show the effects of the replacement strategy 

and the occurrence time uncertainty. The deficient research about return of emergency 

supplies and the important practice of emergency inventory make our work valuable. 

   This paper is organized as follows. In section 2, the researched problem is defined and 

described. Replacement model based on remaining time and remaining quantity are presented 

with unknown stochastic distribution functions in section 3. In section 4, we compare 

inventory level and total costs of different models and present analyses about effectiveness of 

replacement strategy and occurrence time uncertainty. In section 5, we develop a 

discrete-event simulation model to demonstrate and analyse decisions, applying the results to 

some simple numerical cases. Finally, conclusions are reached in section 6. 
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2. PROBLEM DESCRIPTION 

In practice, emergency supplies for civil aviation accidents generally come from airport’s 

inventory and some specified rescue units. The emergency supplies ordering system is 

different from quantitative order method or regular order method. The ending time of a single 

emergency phase is min(t, T), among which t represents stochastic civil aviation occurrence 

time and T represents shelf life of emergency supplies. In other words, the preparation phase 

will enter into a new circulate phase when emergency response is end or emergency supplies 

are expired. We assume the stochastic demand and the stochastic occurrence time are 

mutually independent. 

For the purpose of our analysis, the following notations are used: 

e  – the unit expired cost of emergency supplies, 

s  – the unit shortage cost of emergency supplies, 

k  – the unit exchange or replacement cost of emergency supplies, 

  – the ratio of expected expired quantity to remaining quantity, 0    1, 

x  – the stochastic demand of emergency supplies at stage of emergency response, 

I  – the optimal inventory level, a decision variable, 

t  – stochastic civil aviation occurrence time, 

T  – shelf life of emergency supplies, 

a, b – the lower and upper bound of stochastic occurrence time t, 

c, d – the lower and upper bound of stochastic demand x, 

q1  – the replacement lifetime ratio, defined by time at replacement dividing lifetime, 

q2  – the replacement quantity ratio, defined by amount of usage dividing total inventory, 

f(x) – probability density function of stochastic demand, 

g(t) – probability density function of stochastic occurrence time, 

F(x) – cumulative density function of stochastic demand, 

G(t) – cumulative density function of stochastic occurrence time, 

(A)
+ 
– max (0, A), that is, (A)

+ 
= max (0, A). 

   The two replacement scenarios are proposed based on checking system of emergency 

supplies in airport practically. At the end of emergency phase, airport will check inventory. If 

the remaining lifetime is short or remaining quantity is large, in order to avoid the huge 

expired losses, airport will ask suppliers to return and exchange the surplus materials. 

   Scenario 1: airport and suppliers reach an agreement on replacement lifetime ratio q1, (1) 

if civil aviation accident occurs within q1T, that is, when the remaining life time is longer than 

(1 – q1)T, new emergency supplies will be replenished to the inventory level I without 

replacement strategy; (2) if civil aviation accident occurs beyond q1T, and the remaining life 

time is shorter than (1 – q1)T, all surplus materials will be replaced by suppliers and amount I 

of new emergency supplies will be transported to airport; (3) if no civil aviation accident 

occurs within shelf life T, all emergency supplies will be expired and airport affords the 

expired losses. Scenario 1 is the replacement strategy based on remaining lifetime. 

   Scenario 2: airport and suppliers reach an agreement on replacement quantity ratio q2, (1) 

if civil aviation accident demand is less than the amount q2I, in other words, when the 

remaining quantity is larger than (1 – q2)I, all surplus materials will be replaced by suppliers 

and amount I of new emergency supplies will be transported to airport; (2) if civil aviation 

accident demand exceeds the amount q2I, and the remaining quantity is smaller than (1 – q2)I, 

new emergency supplies will be replenished to the inventory level I without replacement 

strategy; (3) if no civil aviation accident occurs within shelf life T, all emergency supplies will 

be expired and airport affords the expired losses. Scenario 2 is the replacement strategy based 

on remaining quantity. 
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   Inventory level represents service level, and the effectiveness of the replacement-based 

strategy can be measured by losses and inventory level through building the model that is 

non-replacement. The effects of occurrence time uncertainty on inventory level are analysed 

by building the model with deterministic occurrence time and unlimited warehousing time. 

Subscript 1, 2, 3 represents the replacement model based on remaining lifetime, replacement 

model based on remaining quantity, and general model without replacement respectively. 

 

3. MODELS WHEN REPLACEMENT IS ALLOWED 

3.1  Replacement model based on remaining lifetime 

The expected losses include shortage losses, possible expired losses, replacement costs, and 

expired losses for total emergency supplies. 
1

1 ( ) ( ) ( ) ( ) ( ) ( )
T d q T I

a I a c
ETC s x I f x g t dxdt e I x f x g t dxdt      
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T I b d

q T c T c
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1
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1 / ( ) ( ) ( ) ( )
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d dI sf x g t dxdt ef x g t dxdtETC
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2 2
1 1/ ( ) ( ) ( ) ( ) ( )( ( ) ( ))d dI sf I G T ef I G T kf I G T G q TETC         (3) 

   Eq. (3) is greater than zero, and the unique solution of Eq. (1) can be reached by letting Eq. 

(2) being equal to zero. 

1
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
, 1

0
I

k





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   Proposition 1 shows that the optimal inventory level increases with the increase of unit 

shortage cost, and decreases with the increase of unit expired cost, expired rate and unit 

replacement cost. Furthermore, the optimal inventory level may increase or decrease with the 

increase of lifetime, and it depends on the distribution function of stochastic occurrence time. 

3.2  Replacement model based on remaining quantity 

2

2

2 ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

T d T I

a I a q I

T q I b d

a c T c

s x I f x g t dxdt e I x f x g t dxdtETC

k I x f x g t dxdt eIf x g t dxdt

   

  

   

   

    (4) 

   Proposition 2: The existence of solution of Eq. (4) is dependent on the distributed 

functions in stochastic demand. If the solution I2
*
 can be reached, then the following holds: 

2 2 2 2 2 22 2 2 2

2 2 2 22 2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) 0

sF G T eF G T eF q G T q e q f q G TI I I I I I

kF q G T q k q f q G T e eG T sG TI I I I

       

   

   

      
 

   Proposition 3: The effects of parameters (shortage cost, expired cost, replacement cost, 

replacement quantity ratio, expected expiration rate etc.) on optimal inventory level depend 

on the distribution function of stochastic demand. 

   From Proposition 2 and Proposition 3, the existence of optimal solution and the effects of 

parameters is correlated to the distributed function in stochastic demand, and to but much less 

to the distributed function in stochastic occurrence time. The possible explanation is that the 

stochastic occurrence time cannot affect the integrand in this construction function. 
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4. ANALYSIS FOR REPLACEMENT STRATEGY 

To demonstrate the effectiveness of replacement-based strategy, the general storage model 

with non-replacement strategy is proposed at the same time. 

4.1  General model with non-replacement 

3 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
T d T I b d

a I a c T c
s x I f x g t dxdt e I x f x g t dxdt eIf x g t dxdtETC             (5) 

   The second-order derivative is greater than zero, and the unique optimal solution of Eq. (7) 

can be calculated through letting first-order derivative being equal to zero. 
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   Proposition 4 shows that the optimal inventory level of Eq. (5) increases with the increase 

of the shelf life and unit shortage cost, and decreases with the increase of unit expired cost 

and possible expired rate. 

4.2  Comparison and analysis 

Considering replacement strategy complicates the inventory management problem and raises 

new issues when determining the optimal inventory strategies. To provide closed-form 

expressions, we assume both stochastic demand and stochastic occurrence time conform to a 

specific distribution. In order to testify the different effects of different distribution on the 

optimal inventory strategies, the different distributed functions in stochastic variable are 

extended in and numerical simulation section. 

   Three popular stochastic distribution types are uniform distribution, normal distribution, 

and exponential distribution. Normal distribution requires a large amount of history data to 

define its parameters [9]. Exponential distribution seems to demonstrate the fundamental 

characteristics of random occurrence time [28], and it also requires mutually independent data 

to define parameters. However, for civil aviation accidents, the historical data are often sparse, 

and accidents are not mutually independent because of ex post measures [29]. In addition, the 

real data in paper [30] reveals that occurrence time conforms to uniform distribution in 

practice. Therefore, assumptions of uniform distributed function in stochastic occurrence time 

and uniformed distributed function in stochastic demand are reasonable and feasible. Then the 

solutions of Eqs. (1), (4), and (5) are obtained. 
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4.3  Replacement model based on remaining lifetime versus general model 

Lemma 1: When e > k, then 3 1

1
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 
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
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 and ETC3  ETC1. 
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   Proof: 3 1

1
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   With a larger q1, the probability of civil aviation accident occurring within q1T is larger 

and the remaining lifetime is shorter when asked to replace the surplus materials, leading to 

the larger probability of being expiration and not replacing surplus materials. Thus, if unit 

possible expired loss is higher than unit replacement cost, the expected losses will increase 

with the increase of q1. Otherwise, the expected losses ETC1 will decrease with the increase of 

q1 if unit replacement cost is higher. 

   Lemma 2: When e > k, then I3
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   Thus, when e > k, then 1 / I3
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   In addition, when e > k, then: 
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   Airport tends to store more emergency supplies to reduce shortage losses if unit 

replacement cost is lower. Contrarily, the airport tends to store less emergency supplies to 

reduce the high replacement cost if unit replacement cost is higher than unit possible expired 

loss. In addition, q1 cannot change the relationship between I1
*
 and I3

*
. 

   Theorem 1: The replacement strategy based on remaining lifetime can improve 

emergency supplies inventory strategies when e > k. 

   Theorem 1 can be demonstrated by Lemma 1 and Lemma 2. When unit replacement cost 

is lower than unit possible expired loss, the replacement strategy can reduce the expected 

losses and enhance the inventory level no matter what the value of q1 is. Therefore, the airport 

should bargain with suppliers to lowing replacement cost, and can benefit from the 

replacement strategy based on remaining lifetime. 

4.4  Replacement model based on remaining quantity versus general model 

Lemma 3:When e > k, 3 2
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   For a larger q2, the probability of replacing surplus materials is larger and the probability 

of expiration is smaller. Thus, if unit possible expired loss is higher than unit replacement cost, 

the expected losses will increase with the increase of q2. Otherwise, the expected losses ETC2 

will decrease with the increase of q2. So the value of q2 can change the decision whether to 

select the replacement strategy based on remaining quantity or not. 
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Table I: The gap of expected losses. 

 22

~qq   
22

~qq   

e > k ETC3 > ETC2 ETC3  ETC2 

e  k ETC3  ETC2 ETC3 > ETC2 

   Lemma 4: There exists a turning point 
2q , making I3

* 


 
I2

*
 when 22 qq  , and I3

* 
>

 
I2

*
 

when 22 qq  . 

   Lemma 4 can be illustrated by the closed-form solution of equation I3
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. 

   Theorem 2: The effective replacement strategy based on remaining quantity satisfies: 

   (1) If 22
~qq  , when e > k, then q2 should satisfy 222

~ qqq  , and when e  k, then q2 

should satisfy 22
~qq  . 

   (2) If 22
~qq  , when e  k, then q2 should satisfy 22 qq  , and when e > k, there is no 

complete effective range. 

   Theorem 2 can be demonstrated by Lemma 3 and Lemma 4, different from scenario 1, we 

are not sure the replacement-based strategy must be effective for airport. In order to reduce 

losses and enhance service level simultaneously, airports should lower the unit replacement 

cost by coordination or technologies, and control the size of q2 at the same time. 

4.5  Further discussions about replacement and occurrence time uncertainty 

In classical newsboy model, a stochastic storage model is proposed with stochastic demand 

and deterministic occurrence time and unlimited warehousing time (lifetime). Thus, the 

optimal solutions to the classical newsboy models with replacement based on remaining 

quantity and with non-replacement are calculated as follows. 
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 Effects of the value of ratios on inventory level 

   Theorem 3: When e > k, 1
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   The results of Theorem 3 can be illustrated well by the characteristics of replacement 

strategy based on remaining lifetime and replacement strategy based on remaining quantity. 

 Effects of occurrence time uncertainty on inventory level 

   Theorem 4: 22 II
 , 33 II

 . 

   Theorem 4 can be obtained by calculating II -2

*

2 – I2
*
 and II -3

*

3 – I3
*
, and the results show that 

occurrence time uncertainty leads to lower inventory level. In theory, the optimal solution to 

the decision variable with stochastic occurrence time should consist with that with 

deterministic occurrence time under risk-neutral criteria. However, the ending time of a single 

emergency preparation is assumed min (t, T), meaning that the cycle time is shortened and the 

order quantity is reduced accordingly. 

 

5. SIMULATION RESULTS 

A simulation case is proposed and analysed firstly assuming stochastic occurrence time 

conforms to uniform distribution from a to b and stochastic demand conforms to uniform 

distribution from c to d. Then we simulate, analyse and compare the optimal inventory level 
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when stochastic variables conform to different distributions such as exponential distributions 

and normal distributions. In the absence of realistic data, we estimate parameters by taking 

advantage of relative literature [9, 14, 20]. Several mid-size problems are designed. 

Table II: Specific value of parameters. 

a b c d T s e  k 

1 3 10 110 2 20 12 0.5 10 

   From results in Table III and Table IV, we find that considering occurrence time 

uncertainty and limited warehousing time reduces service level by 4.3 %, while reduces total 

costs by 51 %. We also show that the value interval will affect the optimal solutions, as well 

as distributed functions. Furthermore, the replacement strategy based on remaining lifetime 

seems to be more reliable facing occurrence time uncertainty and demand uncertainty, 

resulting from total costs variance between replacement strategy based on remaining lifetime 

(0.32 % – 0.37 % in example 1; 0.36 % – 2.67 % in example 2) and replacement strategy 

based on remaining quantity (-181.54 % – 0.96 % in example 1; 12.34 % in example 2). The 

simulation results and explanations of distribution functions are presented in Figs. 1 to 6. 

Table III: Optimal solutions to all models for c = 100 example. 

q1/q2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

I1
*
 103.3 103.4 103.6 103.7 103.8 104 104.2 104.3 104.5 104.8 105 

ETC1
*
 646.1 646 646.1 646 645.9 646 646.1 645.9 646 646.2 646.3 

I2
*
 110 107.6 105 102.7 100.8 100 100 100 100 100 100 

ETC2
*
 -525 -274 -56.9 127.9 284.5 400 490 560 610 640 650 

I3
*
 103.1 103.1 103.1 103.1 103.1 103.1 103.1 103.1 103.1 103.1 103.1 

ETC3
*
 643.8 643.8 643.8 643.8 643.8 643.8 643.8 643.8 643.8 643.8 643.8 

I2 123 119.6 116.6 114.1 112 110.3 109 108 107.2 106.8 106.7 

ETC2 -1116 -597 -159 209.6 516.8 768.4 969.3 1122 1228 1292 1313 

I3 107.7 107.7 107.7 107.7 107.7 107.7 107.7 107.7 107.7 107.7 107.7 

ETC3 1316 1316 1316 1316 1316 1316 1316 1316 1316 1316 1316 

  

Figure 1: Stochastic occurrence time and  Figure 2: Stochastic occurrence time and stochastic  

stochastic demand conform to    demand conform to uniform distribution and  

uniform distribution.      exponential distribution respectively with  

           = 1/105. 



Meng, Guo, Zhao, Lu, Wan, Rong, Pan: Optimization and Simulation for Airport Emergency … 

141 

Table IV: Optimal solutions to all models for c = 10 example. 

q1/q2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

I1
*
 34.1 34.7 35.4 36 36.7 37.4 38.2 39 39.9 

ETC1
*
 511.8 510.6 509.4 508.1 506.7 505.2 503.7 502 500.3 

I2
*
 10 10 10 10 10 10 10 10 10 

ETC2
*
 560 560 560 560 560 560 560 560 560 

I3
*
 40.8 40.8 40.8 40.8 40.8 40.8 40.8 40.8 40.8 

ETC3
*
 498.5 498.5 498.5 498.5 498.5 498.5 498.5 498.5 498.5 

     
Figure 3: Exponential distribution of stochastic  Figure 4: Exponential distribution of stochastic  

occurrence time with  = 1 and     occurrence time with  = ½ and  

uniform distribution of stochastic    uniform distribution of stochastic  

demand.          demand. 

   

Figure 5: Uniform distribution of stochastic  Figure 6: Normal distribution of stochastic  

occurrence time and normal      occurrence time with  = ½,  = ¼  

distribution of stochastic demand     and uniform distribution of stochastic  

with  = 105,  = 1/1052.      demand. 



Meng, Guo, Zhao, Lu, Wan, Rong, Pan: Optimization and Simulation for Airport Emergency … 

142 

   The results in Figs. 1 to 6 show that different stochastic distribution leads to different 

inventory strategies and the service levels are more likely to be enhanced with replacement 

strategy when stochastic demand conforms to normal distribution.  represents the frequency 

within per unit time and the large value of  means the high probability of civil aviation 

accident, leading to airport reserves more emergency supplies to deal with emergency and risk. 

Furthermore, the effect of distributed function in stochastic occurrence time is not so great 

comparatively. 

 

6. CONCLUSIONS 

The paper studies an inventory control system with stochastic accident occurrence time and 

short lifetime of perishable emergency supplies, then first proposes two stochastic models 

with replacement strategy based on remaining lifetime and remaining quantity of emergency 

supplies respectively at the end of emergency preparation phase. 

   The effectiveness of replacement strategy is not only correlated to unit replacement cost, 

but also to the value of replacement ratio. The accident occurrence time uncertainty and 

limited warehousing lifetime lower the optimal inventory level, and simulation results show 

that considering occurrence time uncertainty and limited warehousing time can reduce total 

costs by 51 % though reduce service level by 4.3 %. Simulation results demonstrate that the 

distribution interval affects optimal solutions, and that different distributed functions in both 

occurrence time and demand lead to different decisions. Further, solving a replacement model 

based on remaining lifetime can obtain more reliable solutions. 

   Our work helps enrich researches on risk management in theory and provide advice and 

suggestions for airport in practice. However, there is much future work to perfect our research 

content. Obviously, the network designs and supply chain management between airports and 

suppliers should be studied deeply. Then, a game model should be proposed between airports, 

government, society and companies for coordination mechanism. Thirdly, a multi-stage 

stochastic programming or dynamic planning should be researched on emergency supplies 

inventory management. 
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