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Abstract 

An automated guided vehicle (AGV) is a mobile robot with remarkable industrial applicability for 

transporting materials within a manufacturing facility or a warehouse. AGV scheduling refers to the 

process of allocating AGVs to tasks, taking into account the cost and time of operations. Multi-

objective scheduling is adopted in this study to acquire a more complex and combinatorial model in 

contrast with single objective practices. The model objectives are the makespan and number of AGVs 

minimization while considering the AGVs battery charge. A fuzzy hybrid GA-PSO (genetic algorithm 

– particle swarm optimization) algorithm was developed to optimize the model. Results have been 

compared with GA, PSO, and hybrid GA-PSO algorithms to explore the applicability of the algorithm 

developed. Model’s feasibility and the algorithms’ performance were investigated through a numerical 

example before and after the optimization. The model evaluation and validation was conducted 

through simulation via Flexsim software. The fuzzy hybrid GA-PSO surpassed the other methods, 

although obtaining less mean computational time was the only significant improvement over hybrid 

GA-PSO. 
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1. INTRODUCTION 

AGVs are driverless mobile vehicles that are computer-controlled (usually battery operated) 

and equipped with different guidance systems (optical, magnetic, laser, etc.) for automated 

functionality [1]. AGVs are extensively used in flexible manufacturing system (FMS) for 

applications where long-distance horizontal transport of materials from/to multiple destination 

points is required and/or the material transport entails repetitive/predictable and/or dangerous 

tasks. Efficient scheduling of them would increase the productivity and reduce the delivery 

cost whilst the entire fleet is optimally utilized [2]. 

      AGV scheduling refers to the process of allocating AGVs to tasks, taking into account the 

cost and required time for the operations [3, 4]. Although AGVs scheduling problem has been 

dealt with before [5-9], it is still an open area of research to improve it for real environment 

results by considering number of AGVs and their battery charge while minimizing the 

makespan. Makespan minimization keeps the resources utilization rate at a balanced level and 

results in a better implementation of expensive FMSs [8, 10]. In addition, performance of the 

AGV systems is heavily influenced by the number of vehicles employed, because AGVs are 

expensive devices that determining the type and the appropriate number of them in an FMS 

largely influences the profitability of the FMS [9, 11, 12], and the appropriate use of AGV's 

battery charge [13, 14]. Multi-objective scheduling of AGVs problem is NP hard; thus, a 

fuzzy hybrid GA-PSO that is a hybrid evolutionary algorithm has been applied to the 

proposed model in this study. GA and PSO are two well-known metaheuristic methods in 

optimization and both have remarkable capabilities such as ‘balancing between exploration 

and exploitation’ and ‘combinatorial problem solving’. Hence, by integrating the advantages 

of the compensatory properties of PSO and GA their hybrid can yield better results [15-17]. 
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However, obtaining the best performing settings of the GA operators – crossover and 

mutation – is a challenging task to master. The GA performance is highly dependent on the 

operators’ value. The operators’ value is usually obtained through two methods. In the first 

approach, the GA parameters are acquired through ‘trial and error’ before executing the GA, 

and then GA would be run using those settings being fixed. The second method applies the 

parameter control approach that adaptively regulates the operators’ value based on the 

problem in question. Application of the fuzzy logic is one way of applying the second 

approach to the GA. This study applies a ‘fuzzy automatic GA operators’ controller technique 

(FAOCT)’ to automatically adjust the GA operators during the optimization process based on 

the information from the previous generations such as average fitness of the population. 

Adaptive regulation of crossover and mutation rates is particularly attractive for its processing 

speed and time to optimum result compared with those using fixed values [18-21]. 

Overall, this research aims to use a fuzzy hybrid GA-PSO for multi-objective AGV 

scheduling in an FMS environment. The model will be optimized using fuzzy hybrid GA-PSO 

and compared to three other algorithms (GA, PSO, hybrid GA-PSO), and validated through 

benchmarking and simulation in Flexsim software. 

2. PROBLEM DESCRIPTIONS AND ASSUMPTIONS 

The mathematical model developed for AGV scheduling is described in detail and 

assumptions are introduced in this section. The three selected criteria are classified into two 

main objectives of (1) makespan minimization and (2) minimization of the number of AGVs 

while the AGVs’ battery charge is taken into consideration. The assumptions and limitations 

applied for model development are as follows: (1) all AGVs have unit-load capacity; (2) 

AGVs and machines operate continuously without breakdown; (3) traffic problems, collision, 

or conflicts are avoided by hardware and are not considered in this study; (4) AGV loading 

and unloading times are considered in the travel times; (5) AGVs are allowed to park at their 

pick-up/drop-off (P/D) locations; (6) AGVs have a constant speed and move forward only; (7) 

to avoid machine deadlock, output buffers are allocated for the machines; (8) each machine 

operates only one product at a time; (9) the AGVs are stored in the home until dispatching 

commands are allocated. 

2.1  Minimizing the makespan 

Calculation of the makespan (MS), completion time of all operations, is described in this 

section. A set of n jobs denoted by Jj,j' has some operations denoted by Oji (Operation i from 

job j), which will be processed on Mji which is assigned machine number for Oji. A general 

schematic for reading data is shown in Table I. Makespan can be expressed by: 
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where mj,j’ is the total number of operations of job j,j', i,i' are the indexes of operations, i,i' = 1, 
2, …, mj,j', 𝑛 is total number of jobs, LT

a
ji is the loaded time of A

a 
doing Tji, pji is the processing 

time of Oji, p
s
ji is the start time of processing time of Oji, p

e
ji is the end time of processing time 

of Oji and T
a

ji is the assigned A
a
 to do task Tji. CTOji is the completion time of operation Oji, µ 

is a large positive number, a,a’ is index of AGVs, (a,a’=
 
1,…, z), and A

a,a’
 represents

 
AGVs. 

Constraint (6) is applied to ensure that completion time of the first operation of each job is 

feasible. Operations precedency constraint is described through inequality (8). The (10) and 

(11) inequalities respectively denote the operation and the AGV un-overlapping constraints. 

2.2  Minimizing the number of AGVs 

This section describes the procedure for calculating the number of AGVs, denoted by (NA), 

while taking into account the sufficiency of the AGVs’ battery charge. Tji is the related task to 

Oji (moving from Mji-1 to Mji or H to Mji), T
a

ji is the assigned A
a
 to do task Tji. T

a
 is a 

collection of operations that have done by A
a
. 

a
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a
ji is the drop off time of A
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a
 arrives home after doing Tji. Number of AGV can be expressed 

by: 
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where a

jiRT  is the running time (loaded + unloaded) of A
a
 doing Tji, λ is a coefficient for 

determining when a new AGV should be added, γ is the ratio of energy consumption to time, 

ChA
a
 is the current battery charge of A

a
, a

jiChHT is the charge that A
a
 needed for doing the 

task Tji and back home, 
a

jitT H is the time that A
a
 arrives home after doing Tji, 

a
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a
 doing Tji, 

a

jitPT is the pick-up time of A
a
 doing Tji, 

a

jitDT  is the drop off time of 

A
a
 doing Tji, 

a

jirPT  is the time that A
a
 reaches pick-up place of Tji, y is the index of new AGVs. 

      Eq. (13) makes sure that the assigned AGV has enough battery charge to do the job and 

return home, while it chooses the AGV, which takes less time to reach the point. As battery 

run time of an AGV and battery charging time can be defined depending on the type of 

batteries used/charging methods, charge rate, application, manufacturer, and assignments the 

vehicles perform,  has been defined to adapt to any kind of battery, method charge, etc. The 

automatic and opportunity battery charging is considered here and, on average, an AGV 

charges for 10-12 minutes every hour in this method [22, 23]. 
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2.3  Multi-objective evaluation 

Choosing a solution out of all the efficient solutions is referred to as a posteriori approach by 

decision makers. Pareto is a prominent approach for optimizing the multi-objective problems. 

In this method, Pareto-optimal set is a group of best trade-off schedules, and Pareto-front 

refers to a set of Pareto solutions [19]. Overall fitness function (f(x)) formulation is described 

by: 

    
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      In this study, different weights are applied to the two main objectives as ⅓ for AGV 

numbers and ⅔ for makespan. To have a similar variation range in both the objectives, a 

coefficient is applied to the AGV number objective. The overall fitness function is calculated 

by: 

       
2 1

  
3 3

MSf x NA   (17) 

3. PROPOSED ALGORITHM 

3.1  Fuzzy hybrid GA-PSO 

GA and PSO are two well-known metaheuristic methods in optimization. PSO is a robust 

algorithm which its remarkable performance has been proved in many researches [26]. One of 

the most significant advantages of PSO application is the simplicity in understanding and 

implementation. Besides, balancing between exploration and exploitation in the PSO can be 

taken care by means of three parameters, which can be adaptive or constant during the run. 

GA has the capability of simultaneous evaluation of many points in the search area, which 

increases the probability of finding the global solution of the problem [27-30]. GA and PSO 

methods for the model have been explained in [17]. By hybridizing GA and PSO, the natural 

capabilities (balancing between exploration and exploitation and combinatorial problem 

solving) of these search methods can promise better performance in the problem involved 

[17]. 

      Fuzzy hybrid GA-PSO is a method which got some of the PSO parameters and some of 

the GA operators in fuzzy mode to improve the quality of results. The method is illustrated in 

Fig. 1. 

Similar to all optimization algorithms, this fuzzy hybrid algorithm starts with the 

initializing of the parameters and particles. Application parameters and conditions are 

extracted from Table I. The first column shows a particle (PRα) and the second one shows 

dimensions of the particle (d), d = 1,…, θ, and θ is the total number of operations. The 

dimensions' codes are presented in the first column, which will be discussed later. The 

dimension number of each particle is the total number of operations to be done in the 

scheduling. Initializing particles population is done with randomizing their position (Q) and 

velocity (V) within the maximum and minimum limits which are qmin= 0, qmax= 0, and vmin= 0, 

vmax= 0. A particle is every potential sequence of operations, and each operation is represented 

by a particle dimension. Three sub-steps for encoding a particle are as follows (for more 

details refer to [17]): 

   1) Applying smallest position value (SPV) rule. SPV is a rule that facilitates transformation 

of the continuous PSO algorithm to discrete cases applicable to all types of the scheduling 

problem [31]. 

https://en.wikipedia.org/wiki/%CE%98
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   2) Assigning the dimensions' code to the particles. Dimensions’ codes, as in the column 

three of the Table I, are given to the related particles. Dimensions’ codes are the same as the 

job number. 

   3) Identifying the operations sequence in each job. From the left side, the first presence of a 

job number in the sequence is presumed the first operation of that job (i.e., Oj1). In a similar 

fashion, the second time appearance of the same job number in the sequence defines the 

second operation of the same job (i.e., Oj2) and so on. Upon assigning the first encountered 

generated number to a job’s first operation, the precedence constraints are then automatically 

operated in this technique. 

The final encoded solution should undertake the evaluation process. This problem has two 

main objectives, minimizing the makespan and number of AGVs as in Eqs. (1) to (15). Next, 

Eq. (17) computes the total fitness values of the efficient frontiers. After evaluating the 

solution, personal best B
t
d and global best G

t
d are stored in the memory. Personal best is the 

best position of α
th

 particle on d
th

 dimension found so far and the global best is the best 

particle of the whole swarm on d
th

 dimension found so far. 

 

Figure 1: Flowchart of fuzzy hybrid GA-PSO. 

In PSO method, each iteration consists of updating particles based on the global and local best 

particles from the previous iteration. The new velocity and position of the particle is 

calculated based on the Eqs. (18) and (19). 
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Table I: General schematic for reading data. 
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where v
t
d and v

t+1
d are the velocity of α

th
 particle on d

th
 dimension at instance (t) and (t+1), 

respectively; q
t
d and q

t+1
d are the position of α

th
 particle on d

th
 dimension at instance (t) and 

(t+1), respectively. t is the previous iteration, d is the dimension and α is the index for 

particles, α=1,…, S
t
, S

t
 is swarm size at iteration (t), φ1 and φ2 are uniformly distributed 

random numbers in the interval of [0, 1]. C1 is self-confidence while C2 is swarm confidence 

and their values should be tuned based on the experiment. ω is the inertia weight parameter. 

This parameter is the level which previous velocity effects on the current velocity [32, 33]. 

Inertia weight is decayed in related to the number of iteration, as shown in Eq. (20). 

max min
max

max

It
It

 
 


       (20) 

where It is the current iteration number, and Itmax denotes the maximum number of iteration, 

ωmax and ωmin are maximum and minimum values of ω respectively. 

After updating the particles, the two operators derived from GA, which are crossover and 

mutation, are used for the next generation. The crossover operator produces two new 

chromosomes by exchanging some genes of the two selected chromosomes. The GA mutation 

operator initiates extra variability to maintain the diversity within a population. Mutation 

operator is not applied on immune chromosomes (more details in [17]). 
 

3.2  Adaptive genetic operators (AGOs) 

GA parameters such as adaptive crossover and mutation probabilistic rates with fuzzy logic 

rule-based will greatly assist in identifying optimum results quickly compared with those 

using fixed values [20]. Adaptive regulation of crossover and mutation rates is particularly 

attractive to achieve optimum results and has been implemented in a number of works [20, 

21, 34]. 

The number of crossovers is calculated using: 

   ( )
  

2

CR t PS
Number of crossovers


  (21) 

where CR(t) is crossover rate (will be explained below) and PS is population size. 
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The number of mutations is computed by: 

    . ( )eNumber of mutations PS MaxG Pm t    (22) 

where Pm(t) is mutation rate (will be explained below), and Max.Ge is maximum gene code. 

3.3  Fuzzy automatic GA operators’ controller technique (FAOCT) 

FAOCT is applied to automatically calibrate the GA operators of crossover and mutation 

during the optimization (Fig. 2). 

 

Figure 2: Block diagram of proposed fuzzy automatic GA operators’ controller technique for 

crossover and mutation rates. 

Δc(t) and Δm(t) shown in Fig. 2 are the average crossover rate and average mutation rate 

based on generation (t), respectively, and Δf(t) is the average fitness based on generation (t). 

The heuristic updating strategy for these two operators is based on the changes in the average 

fitness of the GA population for two continuous generations. The crossover rate, mutation 

rate, and occurrence rates of the operators will increase if they consistently produce better 

offspring during the recombination process. Otherwise, rate of the operators will decrease [34, 

35]. The changes in fitness at two consecutive steps (i.e. Δf(t-1) and Δf(t)) are inputs of the 

fuzzy crossover and mutation rates, while the changes in the crossover and mutation rates are 

the outputs. Δf (t) is set using Eq. (23): 

𝛥𝑓(𝑡) = (𝑓𝑝𝑎𝑟−𝑠𝑖𝑧𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑡) − 𝑓𝑜𝑓𝑓−𝑠𝑖𝑧𝑒 

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑡)) × 𝛿 = (
∑ 𝑓𝑘(𝑡)

𝑝𝑎𝑟−𝑠𝑖𝑧𝑒
𝑘=1

𝑝𝑎𝑟−𝑠𝑖𝑧𝑒
−

∑ 𝑓𝑘(𝑡)
𝑝𝑎𝑟−𝑠𝑖𝑧𝑒+𝑜𝑓𝑓−𝑠𝑖𝑧𝑒
𝑘=𝑝𝑎𝑟−𝑠𝑖𝑧𝑒+1

𝑜𝑓𝑓−𝑠𝑖𝑧𝑒
) × 𝛿    (23) 

where  is a scaling factor to normalize the average fitness values for defuzzification in the 

fuzzy logic controller (FLC), and is varied accordingly to the given problem. 𝑓𝑝𝑎𝑟−𝑠𝑖𝑧𝑒
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅(𝑡) and 

𝑓𝑜𝑓𝑓−𝑠𝑖𝑧𝑒 
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝑡) are the average fitness values of parents, and offspring at generation (t), 

respectively. The regulation and procedure of Δc(t), and Δm(t) begin with the application of 

Δf(t-1) and Δf(t) based on the average fitness values, as follows: 

If 𝜀 ≤  𝛥𝑓(𝑡 − 1) ≤ 𝛾 and 𝜀 ≤ 𝛥𝑓(𝑡) ≤ 𝛾,  then increase 𝐶𝑅(𝑡), and 𝑃𝑚(𝑡) for next generation; 
If − 𝛾 ≤  𝛥𝑓(𝑡 − 1) ≤ −𝜀 and − 𝛾 ≤  𝛥𝑓(𝑡) ≤ −𝜀, then decrease 𝐶𝑅(𝑡), and 𝑃𝑚(𝑡) for next generation; 

If − 𝜀 ≤  𝛥𝑓(𝑡 − 1) ≤ 𝜀 and − 𝜀 ≤  𝛥𝑓(𝑡) ≤ 𝜀, then rapidly increase 𝐶𝑅(𝑡), and 𝑃𝑚(𝑡) for next generation; 

where  is a given real number in the proximity of zero,  and – represent the given 

maximum and minimum value, respectively, for the fuzzy membership function of the fuzzy 

input and output linguistic variables. The Δf(t-1) and Δf(t) values are normalized 

correspondingly within the range of [-1.0, 1.0]. The Δc(t), and Δm(t) values are normalized 

within the range of [-0.1, 0.1], and [-0.01, 0.01], respectively, depending on their 

corresponding maximum values. The application of a fuzzy decision table for crossover and 

mutation rates is given in Table II. The labels of the membership function are as follows:  

PL = Positive larger, PG = Positive large, PM = Positive medium, PS = Positive small,  

NL = Negative larger, NG = Negative large, NM = Negative medium, NS = Negative small,  

ZE = Zero. The quantified levels corresponding to the linguistic values of input and output 

fuzzy variables of crossover and mutation rates FLCs are designated as –4, –3, –2, –1, 0, 1, 2, 

3, and 4, respectively and are shown in Table III. Fuzzy inference engine uses the rules of the 

fuzzy rule base to generate fuzzy outputs based on the inputs. The input values are assigned to 

the indices 𝑥 and 𝑦 which represent the first and second inputs of the average fitness functions 

Δf(𝑡-1) and Δ𝑓(𝑡), respectively. The outputs of changes in the FLC for crossover and mutation 

∑ 
Δf (t) Δf (t-1) 

Δf (t-1) 

Crossover fuzzy controller 

 
Mutation fuzzy controller 

Genetic  

algorithm 

(GA) 

+ 

_   Δc(t) 

 Δm(t) 

f(t) 
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rates are generated upon identification of Z(𝑥,y) for crossover and mutation rates using Table 

III and Eqs. (24) and (25), respectively: 

c(t) = Z(x, y)  0.02       (24) 

m(t) = Z(x, y)  0.002         (25) 

      Subject to        Z ≤ υ𝑥 + (1 − υ)y        (26) 

where Z(x,y) consists of the corresponding values of Δf (t-1) and Δf (t) for defuzzification,  

x, y  {–4, –3, –2, –1, 0, 1, 2, 3, 4}, and υ is an adaptive coefficient which varies with the 

fitness value of the whole population. Based on trial and error, the crossover and mutation 

rates FLCs has a better performance when υ = 0.5. To regulate the increasing and decreasing 

range of rates, the value 0.02 is selected for crossover operator and 0.002 for the mutation 

operator. 

Table II: Fuzzy decision table for crossover                  Table III: Look-up table for control actions by 

               and mutation rate.                                                           crossover rate, and mutation rate FLC. 

Δc(t)&Δm(t) 

Δf(t-1) 

NL NG NM NS ZE PS PM PG PL 

Δf(t) 

NL NL NG NG NM NM NS NS ZE ZE 

NG NG NG NM NM NS NS ZE ZE PS 

NM NG NM NM NS NS ZE ZE PS PS 

NS NM NM NS NS ZE ZE PS PS PM 

ZE NM NS NS ZE ZE PS PS PM PM 

PS NS NS ZE ZE PS PS PM PM PG 

PM NS ZE ZE PS PS PM PM PG PG 

PG ZE ZE PS PS PM PM PG PG PL 

PL ZE PS PS PM PM PG PG PL PL 
 

Z(x,y) 

x 

-4 -3 -2 -1 0 1 2 3 4 

y 

-4 -4 -3 -3 -2 -2 -1 -1 -0 +0 

-3 -3 -3 -2 -2 -1 -1 -0 +0 1 

-2 -3 -2 -2 -1 -1 -0 +0 1 1 

-1 -2 -2 -1 -1 -0 +0 1 1 2 

0 -2 -1 -1 -0 +0 1 1 2 2 

1 -1 -1 -0 +0 1 1 2 2 3 

2 -1 -0 +0 1 1 2 2 3 3 

3 -0 +0 1 1 2 2 3 3 4 

4 +0 1 1 2 2 3 3 4 4 
 

The crossover and mutation rates are respectively updated by the below formulas, 

CR(t) = CR(t-1) + Δc(t)                                                (27) 

Pm(t) = Pm(t-1) + Δm(t)                                               (28) 

      The calibrated rates of CR(t) and Pm(t) should not exceed the range of 0.5 to 1.0 and 0.0 

to 0.1, respectively [35]. 

      This procedure would be repeated until reaching the maximum number of iteration. The 

particle with global best is returned as the best solution once the termination criteria are met. 

4. COMPUTATIONAL RESULTS AND DISCUSSION 

To validate the model, a testbed with 6 jobs (J1, …, J6) processing on 12 machines (M1, …, 

M12), and each job with 3 to 8 operations, has been used (Fig. 3). Table IV shows the AGV 

travel time between H (L/U) points and machines, and Table V demonstrates the processing 

time of every operation on different machines. 

 

Figure 3: The example layout. 
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Table IV: AGV travel time between L/U points and machines. 

 L/U M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

L/U 0 6 18 28 42 36 38 17 50 51 37 24 10 

M1 34 0 12 22 36 50 52 31 64 77 71 58 44 

M2 22 28 0 10 24 38 40 19 52 66 59 46 32 

M3 34 40 52 0 14 28 48 31 42 55 71 58 44 

M4 34 40 52 42 0 14 34 31 28 41 71 58 44 

M5 58 64 76 66 80 0 20 41 14 27 61 48 68 

M6 38 46 58 46 60 54 0 21 12 25 41 28 48 

M7 17 23 35 25 39 33 21 0 33 46 40 27 27 

M8 64 70 82 72 86 80 44 47 0 13 67 54 74 

M9 51 57 69 59 73 67 31 34 43 0 54 41 61 

M10 41 47 59 49 63 57 21 24 33 46 0 31 51 

M11 54 60 72 62 76 70 34 37 46 59 13 0 64 

M12 44 50 62 52 66 60 28 27 40 53 27 14 0 

Table V: The processing time (in min) of every operation on different machines. 

Code Operation Machine Operation time Code Operation Machine Operation time 

1 O11 M2 37 3 O35 M6 25 

1 O12 M6 33 3 O36 M7 13 

1 O13 M5 34 3 O37 M8 14 

1 O14 M8 35 3 O38 M11 23 

1 O15 M1 23 4 O41 M1 16 

1 O16 M12 34 4 O42 M7 11 

1 O17 M7 37 4 O43 M5 23 

1 O18 M5 26 4 O44 M12 34 

2 O21 M3 23 4 O45 M6 25 

2 O22 M4 26 4 O46 M8 13 

2 O23 M6 27 5 O51 M1 16 

2 O24 M11 25 5 O52 M7 11 

2 O25 M10 34 5 O53 M9 31 

2 O26 M9 23 6 O61 M3 26 

3 O31 M1 26 6 O62 M2 31 

3 O32 M2 25 6 O63 M10 23 

3 O33 M10 31 6 O64 M4 24 

3 O34 M4 24 6 O65 M11 35 

Fig. 4 shows the scheduling before optimization, where the makespan is 1475 minutes 

using 7 AGVs. 

  

Figure 4: The example before optimization. 

The best performing GA parameters set, according to the experimental approach, was 

found to be the crossover and mutation rates of 0.2 and 0.03, respectively. The best 

performing of PSO parameters were C1 = C2 = 2, wmin = 0.01, and wmax = 0.5. All the four 

algorithms, after the optimization, showed satisfactory results in decreasing the makespan and 

AGVs number. Their performance is illustrated in Fig. 5. 
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Table VI illustrates that the fuzzy hybrid GA-PSO algorithm has outperformed the other 

three algorithms and showed the best fitness result by 1181.1, followed by hybrid GA-PSO 

(1182.4), GA (1229.1), and PSO (1317.5). However, its only notable improvement over 

hybrid GA-PSO was obtaining less mean computational time.  

Fig. 6 shows scheduling of the example after optimization by fuzzy hybrid GA-PSO with 

makespan of 1229 minutes and 5 AGVs. 
 

 

Figure 5: Performance of the four algorithms. 

Table VI: Test results of the optimization algorithms. 

Algorithm Objectives Best Worst Mean 
Mean computational 

time 

PSO 

Fitness function 1317.5349 1368.1965 1339.3993 

128.7481 sec  Makespan 1325 1401 1357.8 

Number of AGV 6 6 6 

GA 

Fitness function 1229.1548 1352.8647 1302.4750 

131.2939 sec Makespan 1301 1378 1345.2 

Number of AGV 5 6 5.6 

Hybrid 

GA-PSO 

Fitness function 1182.4928 1218.4892 1189.9587 

133.6356 sec Makespan 1231 1285 1242.2 

Number of AGV 5 5 5 

Fuzzy 

hybrid GA-

PSO 

Fitness function 1181.1597 1219.1558 1189.5587 

105.3956 sec Makespan 1229 1286 1241.6 

Number of AGV 5 5 5 

 

Figure 6: The example after optimization (by fuzzy hybrid GA-PSO). 

5. SIMULATION VIA FLEXSIM 

The practicality of the proposed model is investigated through simulation with Flexsim 

software based on the above numerical example. Fig. 7 shows a part of the model that was 

built based on the given layout in Fig. 3. In the simulated model, each part enters the system 

through ‘Source’ and the sequence defined in the source represents the job sequence. ‘Sink’ 
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acts as home (H), the place that all the parts are distributed from. Processors are used as 

machines and a ‘Queue’ object placed after each machine acts as a space for the processed 

parts waiting for the AGV pick-up. The yellow vehicles in Fig. 7 are the AGVs that collect 

the products either from the sink resource or machines and deliver as scheduled. Using this 

configuration, the makespan magnitude obtained in simulation was equal to that of the three 

algorithms confirming the optimization results. The validity and practicality of the proposed 

model is therefore proved through this experiment, in which it provides a benchmark for 

further studies on AGVs’ scheduling. The model compatibility to different FMSs and 

environments was also experimented using other examples and was proved feasible. The 

model was also proved capable of handling the objectives either separately or in a 

combination. 
 

 

Figure 7: Simulation of the sample by Flexsim software. 

6. CONCLUSION 

The main draw of this research was to use fuzzy hybrid GA-PSO algorithm for optimization 

of a multi-objective AGV scheduling model in an FMS and compare the results obtained with 

three other algorithms (GA, PSO, and hybrid GA-PSO). The model’s constructing criteria 

were minimization of AGVs number and makespan, while considering the battery charge of 

AGVs. The near-optimum schedules for the combined objective functions were obtained in 

the numerical examples. Comparison of the four algorithms’ result revealed that the fuzzy 

hybrid GA-PSO yields the least makespan and AGV numbers. However, a marginal 

difference between fuzzy hybrid GA-PSO and hybrid GA-PSO performances was observed, 

in which the only significant improvement over hybrid GA-PSO was the less mean 

computational time obtained. The AGV system simulation using Flexsim software, similar to 

the experimental results, proved the developed model’s practicality and the studied algorithms 

appropriateness for solving the scheduling problem. Final, the developed model is applicable 

in various FMS configurations and environments, and it is suitable for single or combinatorial 

optimization of the objectives set. 
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