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Abstract 

We consider a problem of finding the optimal number of medical staffs for an emergency department 

through stochastic simulation. Specifically, the objective is to maximize the expected net profit per 

period of the emergency department while confining the maximum duration of expected waiting times 

of critical and noncritical patients. This is formulated as a simulation optimisation problem with two 

stochastic constraints on waiting times. To find the optimal solution of the problem under statistical 

guarantees, we introduce a two-step fully sequential ranking and selection framework: we first 

determine a set of strictly feasible solutions and then select the best solution among them. We 

implement the proposed framework via Simio and apply it to an emergency department of a university 

hospital. 
(Received in December 2016, accepted in September 2017. This paper was with the authors 6 months for 1 

revision.) 
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1. INTRODUCTION 

Analysis for healthcare service systems has gathered much attention recently. Due to the 

systems’ high complexity and variability, problems for healthcare system management 

include significant challenges, and many scholars and practitioners have adapted operations 

research techniques to solve the problems. Especially, for finding optimal policies with 

respect to healthcare resource planning and scheduling, various models such as simulation, 

optimisation, and mathematical programming are used and studied. Côté [1] presents a 

simulation model to analyse patient flows and resource utilization in a medical clinic. Swisher 

et al. [2] design a discrete-event simulation model to analyse and improve an existing 

physician network. Angelis et al. [3] suggest a framework combining simulation, neural 

network, and optimisation models to determine the optimal number of staffs in a healthcare 

system. Beaulieu et al. [4] formulate an integer programming for a scheduling problem in an 

emergency room. Baesler et al. [5] use a simulation optimisation algorithm to handle the 

uncertainties in schedules of an operating room. Cardoen et al. [6] provide a thorough review 

for operating room planning and scheduling. 

      As a part of the healthcare service systems in hospitals, emergency departments have been 

studied as well. Since the decisions made in an emergency department (ED) should be able to 

manage high uncertainties related to critical situations, like deaths, many of the studies select 

stochastic simulations as their solution approaches. Blasak et al. [7] present an example of a 

simulation model for an ED by using ARENA. Shim and Kumar [8] construct a simulation 

model to study the impact of changes in emergency care processes. Mielczarek [9] constructs 

a discrete event simulation model in order to evaluate costs of emergency services in a 

hospital. Sinreich and Marmor [10] show how a simulation tool can be applied to plan and re-

design an existing emergency department. Carmen et al. [11] propose a decision support 

system for EDs by combining simulation modelling with data envelop analysis. 
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      Although emergency medical services are indispensable to the public, many hospitals are 

reluctant to expand or invest in their EDs. It is usual because the high uncertainties in the EDs 

are difficult to deal with, and the profits from the EDs are usually low when compared to 

other departments. While it is not easy to increase the prices of the services, the costs of an 

ED, mainly caused by its medical staffs, keep increasing year by year. Therefore, in order to 

help the ED’s efficient operation while maintaining the service quality, this paper addresses a 

problem of finding the optimal number of staffing levels that maximize the expected net profit 

per period in a steady state while guaranteeing designated levels of expected waiting times of 

critical and noncritical patients. For handling the high uncertainties in EDs, we construct a 

discrete-event simulation model via Simio and apply a constrained Ranking and Selection 

(R&S) framework to the model. 

      Constrained R&S frameworks have been developed to find the best feasible solution 

among finite (usually under 1000) number of simulated solutions with a statistical guarantee. 

The frameworks mainly belong to two different types: optimal computing budget allocation 

(OCBA) frameworks and fully sequential indifference-zone (IZ) frameworks. The OCBA 

frameworks are designed to allocate a given simulation budget to maximize the probability of 

returning the true best feasible solution correctly under stochastic constraint(s) (see Lee et al. 

[12], Hunter and Pasupathy [13], and Pasupathy et al. [14] for more details). On the other 

hand, the fully sequential IZ frameworks are designed to guarantee the pre-specified 

probability of selecting the true best feasible (or nearly feasible) solution correctly under 

stochastic constraint(s) (see Andradóttir and Kim [15], Healey et al. [16-18] for more details). 

The existing fully sequential IZ frameworks for the constrained R&S employ the feasibility 

check procedure of Batur and Kim [19] that returns a set of feasible or nearly feasible solutions 

with a pre-specified probability. Meanwhile, Lee et al. [20] present an adaptive feasibility 

check procedure recently that return a set of strictly feasible solutions with a pre-specified 

probability. Since our objective is to find the best strictly feasible solution of a constrained 

R&S problem with a given pre-specified probability, we focus on fully sequential IZ 

frameworks with the adaptive feasibility check procedure rather than the OCBA frameworks. 

      The most closely related work to ours is from Ahmed and Alkhamis [21]. The paper 

considers a problem to decide the optimal number of medical staffs that maximize patient 

throughput under various constraints on budgets and waiting times of patients of an ED. They 

also consider simulation tools to solve the problem. Nevertheless, due to the limitation of the 

feasibility check procedure from Batur and Kim [19] they used in their problem, their solution 

approach does not guarantee to return strictly feasible solutions. Therefore, the averaged 

waiting times of critical patients can be longer than the designated threshold values under 

their solution, and it may result in critical situations related to the patient's survival. In order 

to prevent such a risk, we introduce a constrained R&S procedure, namely AF+KN, in this 

paper. Specifically, the AF+KN procedure consists of two phases: the first phase AF adopts 

the adaptive feasibility check procedure from Lee et al. [20], and the second phase KN adopts 

the procedure of selection of the best in Kim and Nelson [22]. As a result, the procedure 

provides a statistical guarantee to select the best among the strictly feasible solutions. We 

implement the procedure AF+KN as an add-in program of Simio, and use the add-in for 

finding the optimal number of staffing levels in an ED. 

      Possible challenges in this problem are as follows: 1) the work process in an ED are very 

complicated to construct a simulation model, 2) performance measures in the objective and 

constraints should be estimated via stochastic simulations under various scenarios and the task 

requires huge computational budget, and 3) pursuing the maximum profit of the ED may lead 

to increase patients’ waiting times up to their threshold values.  

      This paper is organized as follows: Section 2 provides a brief description of the simulation 

model regarding an emergency department we targeted. In Section 3, we formulate our 
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problem as a stochastically constrained R&S problem and provide a procedure to solve the 

problem. Section 4 presents experimental results, and concluding remark follows in Section 5. 

2. SIMULATION MODELLING 

In this section, we describe key features of our simulation model. The targeted emergency 

department (ED) for modelling is a part of a university hospital in an Asian city: Seoul, 

Republic of Korea. The ED is operating 24 hours every day with three shifts. Five nurses, two 

interns, three residents, and three medical specialists per shift are the current staffing level of 

the ED. 

2.1  Overall process 

In order to describe process flow of the targeted ED, we first observe real incidences of 

patient flow during a week and take interviews with doctors and nurses in the hospital. Based 

on the observation and interviews, we depict the process flow shown in Fig. 1. When any 

patient arrives at the ED, the process starts. After the arrival, patients are categorized based on 

their level of severity. Note that the lower the level is, the higher the severity is. Patients with 

severity level 1 or 2 are directly transferred to a resuscitation room and immediately treated. If 

the patient survives in the resuscitation room, proper medical image services such as X-ray, 

CT, or MRI, are provided, and the patient is admitted to the main hospital. Patients with other 

severity levels need to see a receptionist for the registration and a nurse for the triage. While 

patients with severity level 5 take a single-step treatment in a casualty room, patients with 

severity level 3 or 4 take a two-step treatment with a basic examination. Patients with severity 

level 3 or 4 are first classified to pediatric patients, gynecologic patients, and others. Pediatric 

patients and gynecologic patients use special beds due to their physical characteristics while 

other patients use normal beds. After the basic examination and the first treatment, additional 

steps for medical image services and observations are suggested to the patients if needed, and 

then the second treatment is provided. The process in the ED ends with a patient release due 

to death, hospitalization, or discharge. 

2.2  Patients 

For modelling the patients, we study anonymous patient data visiting the ED for one year. 

Since the seasonal and week effects on patient arrival are not significant, we focus on hourly 

arrival rate in a day. We partition 24 hours into 1-hour intervals and count the number of 

patient arrivals for each interval separately. By taking the averages of the numbers over a year, 

we obtain the average hourly arrival rate as shown in Fig. 2. Based on the rates, the patient 

arrival process is modelled as a non-homogeneous Poisson process. 

      After generating the patients through the non-homogeneous Poisson process, the 

simulation model assigns characteristics of each patient as states of entities. Two main 

characteristics considered are the severity level (1-2, 3-4, 5) and the physical class (normal, 

pediatric, gynecologic). Table I provides the description of each severity level for the triage 

and shows proportions of the patients with severity level 1-2, 3-4, and 5 respectively. Among 

the patients with severity level 3 or 4, 11.4 % of the patients are pediatric patients and 3.5 % 

of the patients are gynecologic patients. The simulation model assigns the severity level and 

the physical class of a patient randomly according to the proportions. 

 



Lee, Park, Park, Park: Constrained Ranking and Selection for Operations of an Emergency … 

566 

Figure 1: The medical treatment process of the emergency department. 

 

Figure 2: The estimated hourly patient arrival rate for a day. 

2.3  Resources 

The main non-human resources of the ED and their capacities are shown in Table II. Beds for 

normal patients can be used by any type of the patients with severity level 3 or 4, while beds 
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for pediatric and gynecologic patients are reserved for their own purposes. The resuscitation 

room can be occupied by the most urgent patients (i.e., patients with severity level 1 or 2) 

only and the casualty room can be occupied by patients with severity level 5 only. 

Observation rooms operate for patients with severity level 3 or 4 so that these patients may 

receive concentrated cares such as treatments for geriatric diseases or possible side-effects. 

      The human resources in the ED are categorized into four different types: 1) nurse,  

2) medical intern, 3) resident, and 4) medical specialist. Each type of staffs covers a different 

range of jobs as in Table III. 

Table I: Severity levels of patients. 

Severity Level Description Proportion (%) 

1 Dead or nearly dead 
3.9 

2 Alive but unconscious 

3 Conscious mostly with musculoskeletal disorders 
84.5 

4 Slightly wounded with cuts and bruises  

5 Similar to outpatients 11.6 

Table II: The main resources of the ED and their capacities. 

Resource Capacity 

Bed for normal patients 20 

Bed for pediatric patients 3 

Bed for gynecologic patients 1 

Casualty room 1 

Resuscitation room 1 

Observation room 4 

X-ray, CT, MRI 2 for each 

Table III: Range of a job for each type of medical staffs. 

Job Nurse Medical Intern Resident 
Medical  

Specialist 

Triage X    

Treatment  

(for severity level 1-2) 
X  X X 

Basic examination  

(for severity level 3-4) 
X X   

First treatment  

(for severity level 3-4) 
X  X  

Second treatment  

(for severity level 3-4) 
X  X X 

Treatment  

(for severity level 5) 
 X   

 

      Through checking blood pressure, pulse, body temperature, and respiration, a nurse 

determines the severity level of patients. A patient with severity level 1-2 should be treated by 

a nurse, a resident, and a medical specialist. A patient with severity level 3-4 needs a nurse 

and a medical intern for the basic examination, a nurse and a resident for the first treatment, 

and a nurse, a resident, and a medical specialist for the second treatment. A patient with 
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severity level 5 is treated only by a medical intern. Any medical service in the process is 

provided only when all required staffs and resources become available. After analysing the 

service time data for a year of the ED, we model the distributions of the service times as 

shown in Table IV. 

Table IV: Distributions of service times in minutes. 

Activity Distribution  

Reception Exponential with mean 1 

Triage Exponential with mean 1 

Treatment at the resuscitation room Exponential with mean 30 

Treatment at the casualty room Exponential with mean 30 

Basic examination Exponential with mean 10 

First treatment for patients with severity level 3 or 4 Exponential with mean 30 

Second treatment for patients with severity level 3 or 4 Exponential with mean 15 

Medical Imaging (X-ray/CT/MRI) Uniform (5,10) 

3. OPTIMISATION MODEL 

The purpose of the problem considered in this paper is finding the optimal number of staffs 

that maximize the ED’s expected net profit per period under constraints on the expected 

waiting times of patients. In this section, we first provide the problem formulation and then 

explain a solution approach based on a constrained R&S framework. 

3.1  Problem formulation 

Let x1, x2, x3 and x4 denote the number of nurses, medical interns, residents, and medical 

specialists, respectively. The ED is operated by 3 shifts a day, and a shift requires 8 hours of 

work approximately. Let 𝒙 define a solution vector (i.e., 𝒙 =(𝑥1, 𝑥2, 𝑥3, 𝑥4)) while Θ denotes 

the set of whole solution candidates. We consider three performance measures 𝑃(𝒙),
𝑊1(𝒙), and 𝑊2(𝒙) for a solution 𝒙.  𝑃(𝒙)  represents the net profit of the ED per period. 

𝑊1(𝒙) denotes the waiting time per critical patient (i.e., a patient with severity level 1 or 2) 

and 𝑊2(𝒙) denotes the waiting time per noncritical patient (i.e., a patient with severity level 3, 

4, or 5). The waiting time is defined by the time duration between the arrival of a patient and 

the start of the first treatment of the patient. Therefore, for example, the waiting time for a 

noncritical patient even include the service times for the reception, triage, and basic 

examination. Since the waiting time of a critical patient can cause serious medical situations 

(e.g., deaths), the ED treats 𝑊1(𝒙) more importantly than 𝑊2(𝒙) and thus manages 𝑊1(𝒙)  

separately from 𝑊2(𝒙). 

      In order to calculate the net profit per period 𝑃(𝒙), we formulate the revenue per period 

𝑅(𝒙), and the cost per period 𝐶(𝒙). The revenue of the ED mainly consists of the total 

payments from the patients and the fixed operational expense allocated by the main hospital. 

The payment amount from a patient does not depend on the severity level but depends on 

when the patient visit the ED. If a patient visits the ED in day time (i.e., from 8 am to 5 pm), 

the patient pays a general fee and a treatment fee for day time. If a patient visits the ED in 

night time (i.e., from 5 pm to 8 am), the patient pays a general fee and a treatment fee for night 

time. Let 𝐿𝑑(𝒙, 𝑡) and 𝐿𝑛(𝒙, 𝑡) define the number of patients who visit the ED in day time and 

night at time 𝑡, respectively. Then the revenue per period of the ED is formulated: 
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𝑅(𝒙) =  ∫ {𝑝1(𝐿𝑑(𝒙, 𝑡) + 𝐿𝑛(𝒙, 𝑡)) + 𝑝2𝐿𝑑(𝒙, 𝑡) + 𝑝3𝐿𝑛(𝒙, 𝑡)}𝑑𝑡
𝑇

𝑡=0

+  𝑝4, (1) 

where 𝑇  denotes the duration of the period, 𝑝1  denotes the general fee, 𝑝2  denotes the 

treatment fee in day time, 𝑝3 denotes the treatment fee in night time, and 𝑝4 denotes the total 

amount of operational expenses from the hospital per period. 

      Since the labour cost takes the most part of total cost of the ED, the cost per period 𝐶(𝒙) 

is formulated based on the labour cost as follows: 

𝐶(𝒙) =  𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 + 𝑐4𝑥4, (2) 

where 𝑐1 , 𝑐2 , 𝑐3 , and 𝑐4  denote the amount of salary per period for a nurse, an intern, a 

resident, and a medical specialist, respectively. Therefore, the net profit per period is as 

follows: 

𝑃(𝒙) = 𝑅(𝒙) − 𝐶(𝒙), (3) 

and our optimisation problem is defined as follows: 

argmax
𝑥∈Θ

          𝐸[𝑃(𝒙)],                (4) 

subject to            𝐸[𝑊1(𝒙)] ≤ 𝑞1, (5) 

                              𝐸[𝑊2(𝒙)] ≤ 𝑞2, (6) 

where 𝑞1 and 𝑞2 are the maximum limits the ED considers for the expected value of 𝑊1(𝒙) 

(i.e., 𝐸[𝑊1(𝒙)]), and the expected value of 𝑊2(𝒙) (i.e., 𝐸[𝑊2(𝒙)]), respectively. Note that the 

within-replication averages of simulation observations 𝑃(𝒙), 𝑊1(𝒙), and 𝑊2(𝒙)  follow the 

normal distribution approximately. 

3.2  Solution approach 

In order to find the optimal solution of the problem in a constrained R&S framework, we 

benchmark a fully sequential IZ procedure of Andradóttir and Kim [15]. Our approach 

AF+KN consists of two phases largely. The first phase AF finds a set of strictly feasible 

solutions that satisfy the two waiting time constraints. Among the feasible solutions, the 

second phase KN selects the best or near best solutions with a statistical guarantee. 

      For the AF phase, we employ the adaptive feasibility check procedure of Lee et al. [20]. 

Fig. 3 describes the procedure named 𝐴𝐹(𝒙, ℓ) to check the feasibility of solution 𝒙 regarding 

a constraint  ℓ.  In Fig. 3, 𝑅(𝑟; 𝑣, 𝑤, 𝑧) = max {0,
𝑤𝑧

2𝑣
−

𝑣

2
𝑟}  for any 𝑣, 𝑤, 𝑧 ∈ ℝ, 𝑣 ≠ 0.  For  

ℓ = 1 or 2, both 𝑊ℓ𝑗
1 (𝒙) and 𝑊ℓ𝑗

2 (𝒙) for 𝑗 = 1, 2, ⋯, are within-averages of 𝑊ℓ(𝒙) that are 

independent and identically distributed (i.i.d.). For the KN phase, we use the procedure of 

selection of the best in Kim and Nelson [22]. 

      Fig. 4 introduces detailed steps of the entire solution procedure AF+KN. In Fig. 4, 𝑘 

represents the total number of solutions in Θ, and 𝑃𝑗(𝒙) represents the j
th

 within-averaged 

observation regarding 𝑃(𝒙). Note that 𝑃𝑗(𝒙) for 𝑗 = 1, 2, ⋯,  are i.i.d. and let 𝑃̅𝑟(𝒙) be the 

sample average of 𝑃𝑗(𝒙), 𝑗 = 1,2, … , 𝑟 where 𝑟 is the number of across replications. When 

two solutions 𝒙  and 𝒙′  are given, 𝑆𝒙𝒙′
2  denotes the sample variance of 

𝑃1(𝒙) − 𝑃1(𝒙′), … , 𝑃𝑛0
(𝒙) − 𝑃𝑛0

(𝒙′). 
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Procedure AF(𝒙, ℓ) 
 

Step 0: Set the iteration counter 𝜏 = 1, initial sample size 𝑛0 ≥ 2, nominal probability of correct 

decision 0 < 1 − 𝛽 < 1 , and initial tolerance level 𝜖ℓ𝜏 . Set the maximum reduction ratio as 

0 < 𝜁𝑚𝑎𝑥 < 1. Compute 𝜂 =
1

2
((2𝛽)

−
2

𝑛0−1 − 1). 

 

Step 1: Define ℎ1
2 = 2𝜂(𝑛0 − 1). Obtain 𝑛0 independent observations 𝑊ℓ𝑗

1 (𝒙) and 𝑊ℓ𝑗
2 (𝒙) each for 

𝑗 = 1, 2, … , 𝑛0  with solution 𝒙 and compute their sample variances 𝑆1ℓ
2 (𝒙) and 𝑆2ℓ

2 (𝒙). Set stage 

counters 𝑟1ℓ(𝒙) = 𝑟2ℓ(𝒙) = 𝑛0 and feasibility indicators 𝐼1ℓ(𝒙) = 𝐼2ℓ(𝒙) = 0, and go to Step 2-1. 
 

Step 2-1: If (∑  𝑊ℓ𝑗
1 (𝒙)

𝑟1ℓ(𝒙)
𝑗=1 ) − 𝑟1ℓ(𝒙)(𝑞ℓ − 𝜖ℓ𝜏) ≤ −𝑅(𝑟1ℓ(𝒙); 𝜖ℓ𝜏, ℎ1

2, 𝑆1ℓ
2 (𝒙)), then set 𝐼1ℓ(𝒙) =

1; else if (∑  𝑊ℓ𝑗
1 (𝒙)

𝑟1ℓ(𝒙)
𝑗=1 ) − 𝑟1ℓ(𝒙)(𝑞ℓ − 𝜖ℓ𝜏) ≥ 𝑅(𝑟1ℓ(𝒙); 𝜖ℓ𝜏 , ℎ1

2, 𝑆1ℓ
2 (𝒙)), then set 𝐼1ℓ(𝒙) = −1.  

 

Step 2-2: If 𝐼1ℓ(𝒙) ≠ 0 , then go to Step 3-1. Otherwise, take one additional observation 

𝑊ℓ(𝑟1ℓ(𝒙)+1)
1 (𝒙), set 𝑟1ℓ(𝒙) = 𝑟1ℓ(𝒙) + 1, and go back to Step 2-1. 

 

Step 3-1: If (∑  𝑊ℓ𝑗
2 (𝒙)

𝑟2ℓ(𝒙)
𝑗=1 ) − 𝑟2ℓ(𝒙)(𝑞ℓ + 𝜖ℓ𝜏) ≤ −𝑅(𝑟2ℓ(𝒙); 𝜖ℓ𝜏, ℎ1

2, 𝑆2ℓ
2 (𝒙)), then set 𝐼2ℓ(𝒙) =

1; else if (∑  𝑊ℓ𝑗
2 (𝒙)

𝑟2ℓ(𝒙)
𝑗=1 ) − 𝑟2ℓ(𝒙)(𝑞ℓ + 𝜖ℓ𝜏) ≥ 𝑅(𝑟2ℓ(𝒙); 𝜖ℓ𝜏, ℎ1

2, 𝑆2ℓ
2 (𝒙)), then set 𝐼2ℓ(𝒙) = −1.  

 

Step 3-2: If 𝐼2ℓ(𝒙) ≠ 0, go to Step 4. Otherwise, take one additional observation 𝑊ℓ(𝑟2ℓ(𝒙)+1)
2 (𝒙), 

set 𝑟2ℓ(𝒙) = 𝑟2ℓ(𝒙) + 1, and go back to Step 3-1. 
 

Step 4: If 𝐼1ℓ(𝒙)= 𝐼2ℓ(𝒙) = 1, declare solution 𝒙 as feasible regarding constraint ℓ and stop. Else if 

𝐼1ℓ(𝒙)= 𝐼2ℓ(𝒙) = −1, declare solution 𝒙 as infeasible regarding constraint ℓ and stop. Otherwise, set 

𝜖𝜏+1 = 𝜖𝜏 ∙ min (𝜁𝑚𝑎𝑥 ,
ℎ1

2𝑆1ℓ
2 (𝒙)

𝑟1ℓ(𝒙)𝜖ℓ𝜏
,

ℎ1
2𝑆2ℓ

2 (𝒙)

𝑟2ℓ(𝒙)𝜖ℓ𝜏
) , 𝜏 = 𝜏 + 1, and 𝐼1ℓ(𝒙) = 𝐼2ℓ(𝒙) = 0, and then go back to 

Step 2-1. 
 

Figure 3: Description of the AF procedure for solution 𝒙 regarding constraint ℓ. 

      Remark. The AF+KN procedure shown in Fig. 4 runs with the common random number 

(CRN) as in Andradóttir and Kim [15]. If users consider independent random streams over 

different solutions rather than using CRN, they need to set 𝛽 = [1 − (1 − 𝛼1)
1

𝑘] /2 in Phase I 

and 𝛽 = [1 − (1 − 𝛼2)
1

|𝐹|−1] in Phase II instead of the 𝛽 values in Fig. 4. 

      Let 𝒙∗be the best feasible solution selected by AF+KN and 𝒙𝑏 be the true best feasible 

solution. Then, from a simple extention of Lemma 1 in Andradóttir and Kim [15] with 

theorems in Lee et al. [20], AF+KN can provide the statistical guarantee as follows: 

Pr{𝐸[𝑃(𝒙∗)]    𝐸[𝑃(𝒙𝑏)] − 𝛿  and  𝒙∗ is strictly feasible}   1 − 𝛼. (7) 

      Since Simio provides an add-in program for the KN phase already, we create a customized 

add-in program for the AF phase to implement AF+KN. In practice, we first apply the new 

add-in for the AF phase to all solutions under consideration. After terminating the job, we 

apply the existing add-in for the KN phase to the solutions which are declared as feasible by 

the AF phase. 
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Procedure AF+KN 
Setup 

Select the overall nominal confidence level 
1

𝑘
≤ 1 − 𝛼 < 1. Choose any 𝛼1 > 0 and 𝛼2 > 0 such 

that 𝛼1 + 𝛼2 = 𝛼. Determine 𝜖ℓ1 and 𝑞ℓ for each constraint (ℓ = 1 or 2). Select indifference-zone 

parameter 𝛿 and initial sample size 𝑛0 ≥ 2. 
 

Phase I (𝐴𝐹) 

Initialization: Set  =
𝛼1

2𝑘
 . Initialize a set of solutions in consideration 𝑀 = Θ and set 𝐹 = ∅. 

Feasibility check: For all 𝒙∈𝑀 and ℓ = 1, 2, run 𝐴𝐹(𝒙, ℓ). If any 𝒙∈𝑀 is declared as infeasible 

regarding any constraint ℓ , remove 𝒙  from 𝑀 . Else if 𝒙  is declared as feasible regarding all 

constraints, remove 𝒙 from 𝑀 and add 𝒙 to set 𝐹. 

Stopping rule for Phase I: When |𝑀| = 0, stop Phase I and check the followings. 

• If |𝐹| = 0, conclude that the problem has no feasible solution; 

• If |𝐹| = 1, return the solution in 𝐹 as the best feasible solution; or 

• If |𝐹| > 1, go to Phase II with set 𝐹. 
 

Phase II (𝐾𝑁) 

Initialization: Let 𝛽 =
𝛼2

(|𝐹|−1)
  and compute 𝜂 =

1

2
((2𝛽)

−
2

𝑛0−1 − 1). Define ℎ2
2 = 2𝜂(𝑛0 − 1). Set a 

stage counter 𝑟 = 𝑛0  and 𝑀 = 𝐹 . For each solution 𝒙 ∈ 𝑀,  run a new simulation and obtain 

𝑃1(𝒙), … , 𝑃𝑛0
(𝒙) that are independent of any 𝑊ℓ𝑗

1 (𝒙) and 𝑊ℓ𝑗
2 (𝒙) generated in Phase I. Compute 

𝑃̅𝑟(𝒙) and 𝑆𝒙𝒙′
2  for all 𝒙 and 𝒙′(≠ 𝒙) in 𝑀 and go to the Comparison step. 

Comparison: Set 𝑀old = 𝑀. Let 

𝑀 = {𝒙 ∈ 𝑀old: 𝑟𝑃̅𝑟(𝒙) > 𝑟𝑃̅𝑟(𝒙′) − 𝑅(𝑟; 𝛿, ℎ2
2, 𝑆𝒙𝒙′

2 ) for all 𝒙′ ≠ 𝒙 in 𝑀old}. 

Stopping rule: If |𝑀| = 1, terminate the procedure and select the solution in 𝑀 as the best solution. 

Otherwise, for each solution 𝒙 in 𝑀, take an additional observation 𝑃𝑟+1(𝒙) and compute 𝑃̅𝑟+1(𝒙). 

Then update 𝑟 = 𝑟 + 1 and go back to the Comparison step. 

Figure 4: Description of the procedure AF+KN. 

4. EXPERIMENTAL RESULTS 

With the solution approach and the add-ins described in Section 3, we run our simulation 

model to find the optimal number of medical staffs in the ED. We regard a day as a unit 

period and run a simulation for 30 days after the warm-up period of 5 days in simulation 

clock. In order to keep information security of the ED, we use a special budget unit (BU) to 

represent all money value. For 𝑅(𝒙), 𝑝1= 49.28 BU per patient, 𝑝2 = 17.91 BU per patient, 

𝑝3 = 21.17 BU per patient, and 𝑝4 = 76.71 BU per day are used. For 𝐶(𝒙), 𝑐1 = 100 BU per 

nurse per day, 𝑐2 = 133 BU per intern per day, 𝑐3 = 166 BU per resident per day, and 𝑐4 = 200 

BU per medical specialist per day are used. When we run the simulation once, a set of the 

observations of 𝑃(𝒙), 𝑊1(𝒙), and 𝑊2(𝒙)  is obtained. By taking the averages of the 

observations from across replications, we obtain the estimates of 𝐸[𝑃(𝒙)], 𝐸[𝑊1(𝒙)], and 

𝐸[𝑊2(𝒙)]. We consider Θ = {(𝑥1, 𝑥2, 𝑥3, 𝑥4) ∈ 𝑍4|4 ≤ 𝑥1, 𝑥2, 𝑥3, 𝑥4 ≤ 7} and thus, the set Θ 

includes 256 candidate solutions. Note that R&S frameworks may not properly perform for 

the problem with more than 1000 candidate solutions. 

      Firstly, we evaluate the current staffing level of the ED with five nurses, two interns, three 

residents, and three medical specialists. Based on the results from 10,000 replications, the 

expected net profit per period (i.e., 𝐸[𝑃(𝒙)])  is estimated to 4530.50 BU per day, the 

expected waiting time per critical patient (i.e., 𝐸[𝑊1(𝒙)]) is estimated to 0.4315 hour, and the 

expected waiting time per noncritical patient (i.e., 𝐸[𝑊2(𝒙)]) is estimated to 1.8814 hour at 

the current staffing level. The results are presented in the first row of Table V. For the 
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validation check of the simulation model, it is confirmed that the averaged profit, waiting 

times, and throughput estimated through the simulation are similar to the true values of the 

current ED. 

      In order to compare the quality of solutions from AF+KN to those from an existing 

solution approach, we employ the procedure in Andradóttir and Kim [15] which uses a similar 

fully sequential R&S framework to ours. As a counterpart of AF+KN, let us call the 

procedure as F+KN in this paper. After some interviews with the medical staffs in the hospital, 

the target threshold values of waiting times are set to 𝑞1 = 0.15 hour and 𝑞2 = 0.5 hour. For 

the settings of both AF+KN and F+KN, we choose the overall confidence level 𝛼 = 0.05, the 

initial sample size 𝑛0 = 10, and the indifference zone parameter 𝛿 = 33.33 BU. The initial 

tolerance levels of AF+KN are set to 𝜖11= 0.05 and 𝜖21= 0.5/3. Since the performance of 

F+KN depends on its tolerance levels 𝜖1 and 𝜖2 designated by users, we first test 𝜖1= 0.05 and 

𝜖2 = 0.5/3 and then test 𝜖1 = 0.01 and 𝜖2= 0.5/3 as well to show the impact of the tolerance 

levels. 

      Table V summarizes the experimental results with the current staffing level and solutions 

given by AF+KN and F+KN. For the procedures AF+KN and F+KN, we first run ten 

preliminary replications to find promising solutions and report them in the 2
nd

 column of 

Table V. The % of time that each solution is selected as the best by the procedures is provided 

in the 3
rd

 column of Table V. Then, we obtain the estimates of the performance measures by 

running 10,000 replications for each solution (see the 4
th

 to 6
th

 columns of Table V). The 

average number of total observations for each solution is provided in the last column of Table 

V. 

Table V: The current staffing level vs. the solutions selected by AF+KN and F+KN. 

Procedure 

Suggested 

solution 

(𝑥1, 𝑥2, 𝑥3, 𝑥4) 

% of time 
Estimated 

𝐸[𝑃(𝒙)] 
Estimated 

𝐸[𝑊1(𝒙)] 
Estimated 

𝐸[𝑊2(𝒙)] 

Average 

number of 

total 

observations 

Current level (5, 2, 3, 3) - 4530.50 0.4315 1.8814 - 

AF+KN (6, 3, 5, 3) 100 % 3582.50 0.1107 0.2086 37212 

F+KN 

(𝜖1 = 0.05) 

(5, 4, 5, 3) 40 % 3849.63 0.1564 0.3869 3099 

(5, 3, 5, 3) 20 % 3875.60 0.1592 0.3978 3150 

(5, 5, 5, 3) 10 % 3824.37 0.1567 0.3865 3171 

(6, 3, 4, 4) 10 % 3710.60 0.1753 0.3602 3287 

(5, 4, 5, 4) 10 % 3654.07 0.1541 0.3820 3359 

(5, 5, 5, 4) 10 % 3626.40 0.1537 0.3805 3574 

F+KN 

(𝜖1 = 0.01) 

(6, 3, 5, 3) 60 % 3582.50 0.1107 0.2086 11970 

(5, 4, 5, 4) 30 % 3654.07 0.1541 0.3820 11644 

(5, 3, 5, 4) 10 % 3679.70 0.1560 0.3930 12005 

 

      When considering the constraint 𝐸[𝑊1(𝒙)]  ≤ 0.15, one can notice that (6, 3, 5, 3) is the 

only strictly feasible solution among the suggested in Table V. With the solution, we expect 

to reduce the waiting times of patients significantly. Since AF+KN adjusts its tolerance levels 

automatically, AF+KN requires relatively large number of observations than F+KN. 

Nevertheless, the solution resulted from AF+KN is strictly feasible for 100 % of time. On the 

other hand, F+KN uses fixed tolerance levels specified by users and seems to require 

relatively small number of observations than AF+KN. However, we note that all solutions 

suggested by F+KN are infeasible with 𝜖1= 0.05, and 40 % of solutions suggested by F+KN 

are still remained as infeasible with 𝜖1= 0.01. In order to increase the probability that F+KN 

returns the strictly feasible solution, one may need to decrease the tolerance level of F+KN 
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but as the tolerance level becomes smaller, the required computational budget becomes larger. 

Moreover, in practice, it is usually unknown how small the proper tolerance level should be to 

guarantee the strict feasibility of the solution retuned by F+KN. For more computational 

comparisons between AF and F procedures, see Lee et al. [20]. 

      Let 𝑊1
̅̅ ̅̅ (𝒙) denote a within-averaged observation regarding 𝑊1 for solution 𝒙. As shown 

in Fig. 5, the Simio Measure of Risk and Error (SMORE) plot in Kelton et al. [23] is checked 

to analyse the variability in 𝑊1
̅̅ ̅̅ (𝒙). In Fig. 5, the centre, upper, and lower horizontal lines of 

the boxes represent the median, upper 5
th

 quantile, and lower 5
th

 quantile, respectively. For 

example, based on the leftmost plot in Fig. 5, we can conclude that Pr(𝑊1
̅̅ ̅̅ (𝒙) ≥ 0.33)  0.95 

approximately and in other words, 95 % of the critical patients should wait longer than 20 

minutes on average with the current staffing level. 

      Fig. 5 also presents the SMORE plots for 𝑊1(𝒙) observations based on the solutions from 

AF+KN and F+KN. In Fig. 5, the second plot from the left corresponds to the solution (6, 3, 5, 

3) suggested by AF+KN while the rest of plots correspond to other solutions suggested by 

F+KN in Table V accordingly. When compared to the current staffing level, one can notice 

that the solutions suggested by AF+KN and F+KN reduce the variability in 𝑊1(𝒙) 

significantly. Especially, the solution selected by AF+KN guarantees that Pr(𝑊1
̅̅ ̅̅ (𝒙)  ≤ 0.17) 

 0.95 while other solutions suggested by F+KN guarantee that Pr(𝑊1
̅̅ ̅̅ (𝒙)  ≤ 0.26)  0.95. In 

terms of the risk measures for 𝑊1(𝒙), AF+KN seems to provide the best solution consistently. 
 

 

Figure 5: The SMORE plots for 𝑊1
̅̅ ̅̅ (𝒙) under the current staffing level and 𝑊1

̅̅ ̅̅ (𝒙)  based on the 

solutions suggested by AF+KN and F+KN. 

5. CONCLUSION 

In this paper, we consider a problem for operating an ED. The specific problem is finding the 

optimal number of medical staffs that maximize the expected net profit while limiting the 

maximum duration of waiting times of critical and noncritical patients. A simulation model is 

constructed via Simio to mimic the patients, treatment processes, and resources of a real ED 

and used to analyse various solution scenarios. 

      In order to solve the problem with the simulation model, we present a fully sequential 

Ranking and Selection procedure, namely AF+KN, that first identifies the feasible solutions 

and then selects the best solutions among them. As an advantage, AF+KN guarantees strict 

feasibility of the returned solution with a pre-specified probability at least, while an existing 

competitive procedure cannot guarantee it. 
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      By implementing AF+KN to our problem, we find a strictly feasible solution that reduces 

averaged waiting times of patients by 75 %. The solution improves not only the average of the 

waiting times but also the distribution of the waiting times. When checking the SMORE plots, 

the solution returned by AF+KN shows significantly better performance than the current 

staffing level of the ED in terms of the risk measures of the waiting time for critical patients. 

      The Simio model and the solution approach suggested in this paper can be applied to 

resource planning and scheduling of EDs directly. If the patient and resource data are given 

properly, EDs can use the model as well to estimate patients’ waiting times in real time and 

share the information through the web with patients, hospitals, or other government offices 

needed. We expect that the EDs improve their service quality while reducing their burden in 

risk management and profit realization. 

      Since AF+KN procedure is designed under R&S framework, the number of solutions we 

consider in Θ is limited. In addition, although the AF phase guarantees the strict feasibility of 

solutions selected, the KN phase still allows an indifference zone to the objective of the 

problem. Therefore, future researches can be conducted to relax the limit on the number of 

solutions via simulation optimisation or provide the optimal solution without the indifference 

zone as Fan et al. [24] do. 
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