
Int j simul model 16 (2017) 4, 644-657

ISSN 1726-4529 Original scientific paper

https://doi.org/10.2507/IJSIMM16(4)7.400 644

AN EFFECTIVE USE OF HYBRID METAHEURISTICS

ALGORITHM FOR JOB SHOP SCHEDULING PROBLEM

Zhang, H.
*
; Liu, S.

*
; Moraca, S.

**
 & Ojstersek, R.

* School of Economics & Management, Beijing Jiaotong University, Beijing 100044, P. R. China
** Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6, 21000 Novi Sad,

Serbia
*** Faculty of Mechanical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia

E-Mail: zhanghankun@bjtu.edu.cn, shfliu@bjtu.edu.cn, moraca@uns.ac.rs, robert.ojstersek@um.si

Abstract

This paper presents an effective use of hybrid metaheuristics algorithm for solving Job Shop

Scheduling Problem (JSSP). Integration of three metaheuristics algorithms: Shuffled Frog Leaping

Algorithm (SFLA), Intelligent Water Drops algorithm (IWD) and Path Relinking (PR) algorithm were

put together to solve JSSP. First, simulation model was developed and tested on the test data of

Traveller Salesman Problem (TSP). Second, the model was tested on real world production line to

solve the problem of Minimum Needed Workers (MNW) at the production line. The model enables

individual test of three mentioned algorithms and calculation of new proposed Random Multi-

Neighbourhood based Shuffled Frog Leaping Algorithm with Path Relinking (RMN-SFLA-PR).

Experiments were tested on two software environments MATLAB and Simio, which gives us reliable,

robust and tangible results. Results show that the new proposed RMN-SFLA-PR algorithm converged

to optimum almost ten times faster than individual algorithms. The most important thing is the

successful rate of all independent runs of the proposed RMN-SFLA-PR is 100 % in low-dimensional

cases of the 4 benchmarks (dj38) and in JSSP to solve MNW for the real world production line.
(Received in April 2017, accepted in September 2017. This paper was with the authors 2 months for 1 revision.)

Key Words: Job Shop Scheduling Problem, Metaheuristics Algorithm, Shuffled Frog Leaping

Algorithm, Path Relinking, Random Multi-Neighbourhood Structures

1. INTRODUCTION

The need of companies to have highly productive, reliable and economically efficient

production line is a basic concept of Industry 4.0 [1]. In the past the main development of this

three fields were made by human expertise in-depth knowledge, now scientists are more and

more developing methods of artificial intelligence to solve different problems, in our case

JSSP with MNW problem. Discrete systems simulation environments are used to simulate

real world environments with real world parameters put into the simulation model. But now it

is hard to solve NP-hard problems with just one individual simulation software environment.

The main problem is creating new mathematical algorithm and putting it to the discrete

system simulation environment, which already has some preprogrammed structures. That’s

why we proposed the exchange of data between two software environments: MATLAB, in

which new mathematical algorithm is created, and discrete system simulation environment

Simio, which is responsible for the real world production line testing.

 The increase of production capacity is the main goal of modern production companies, but

in most times the number of the workers must stay as low as possible in order to reduce the

costs. That’s why we propose a new RMN-SFLA-PR algorithm to calculate optimal MNW

needed at the production line. The problem is presented in the paper first with the test data of

TSP and second on real world production line, simulated in simulation software Simio.

 Newer automated and robotized production line need workers mainly for checking and

controlling the production line, which must be highly productive without any unplanned

downtime. So, it is very important to properly allocate needed number of the workers to the

https://doi.org/10.2507/IJSIMM16(4)7.400
mailto:zhanghankun@bjtu.edu.cn
mailto:shfliu@bjtu.edu.cn
mailto:moraca@uns.ac.rs
mailto:robert.ojstersek@um.si

Zhang, Liu, Moraca, Ojstersek: An Effective Use of Hybrid Metaheuristics Algorithm for …

645

production line. We transfer the real world production data to simulation model including the

following parameters: distances between the machine centres, utilization rate of machines,

processing times of the machine centres, speeds of conveyor belts, workers and forklifts and

time variables of the machine centres and worker’s tasks, to define the MNW at the

production line.

2. LITERATURE REVIEW

Industry 4.0 [1] is based on improving mass production in minimum needed time. The biggest

world companies are striving for the maximum economic profit; they invest a lot of money to

reach this goal. Without the implementation of artificial intelligence in the different science

research fields this will not be possible or it will take a lot more time and money to solve

these difficult problems.

 Eusuff et al. [2, 3] presented the use of metaheuristic algorithm SFLA on the problem to

determinate optimal discrete pipe size for new pipes networks and for the pipe network

expansion. This was the first step of the implementation of the SFLA as particle swarm

optimization (PSO) for discrete optimization. They proceed with developing next improved

memetic metaheuristic algorithm in which the frogs act as carriers of memes where a meme is

a unit of cultural evaluation. Seven years after this implementation of SFLA algorithm Xu et

al. [4] use mansion algorithm for solving JSSP, NP-hard problem. They use hybrid encoding

scheme in which two sequences are used to illustrate operations order, sequence and machine

assignment. Along the improvement and the implementation of SFLA also PR algorithm was

developed. Rahimi-Vahed et al. [5] present the routing problem of multi-depot periodic

vehicle, for which they must minimize total travel costs. Ribeiro and Resende [6] review the

fundaments and implementation strategies of PR algorithm. As well as numerical examples

are discussed and algorithm are compared. After the basic individual research of metaheuristic

algorithms, we can see that hybrid algorithms are arriving. Hybrid algorithms have a big

advantage of combining positive think of individual algorithms and eliminating individual

algorithms disadvantages. Nguyen et al. [7] proposed multi-star iterated local search (MS-

ILS) to solve TSP the main depot and the customers. In this case, PR is used for reinforced

the tabu list. In the paper Lai and Hao [8] use the PR algorithm for fixed spectrum frequency

assignment problem. They use PR to generate intermediate paths and tabu search for local

optimization. Multi-neighborhood based path relinking algorithm (MN-PR) for solving the

two-sided assembly line balancing problem is proposed by Yang et al. [9]. The proposed MN-

PR algorithm is able to improve the efficiency of the two-sided production line. PR algorithm

is the basic method used for solving capacitated arc routing problem (CARP), the objective is

to find a minimum cost set of tours servicing a subset of required edges under vehicle

capacity constraints. The article is presented by Luiz Usberti et al. [10]. Chaves et al. [11]

presented the minimization of minimum required tool switches to process a set of jobs on

machine center. They use local search heuristics to simplify clustering process; the new

hybrid heuristic based algorithm is named Biased Random Key Genetic Algorithm (BRKGA)

and the clustering search (CS). After the implementing new metaheuristic algorithms to solve

NP-hard problems, authors use simulations to optimize proposed models. Li et al. [12] present

multi-objective optimization of cloud manufacturing service composition with cloud-entropy

enhanced genetic algorithm which is very popular theme in the concept of Industry 4.0. Varga

et al. [13] present gain-scheduling for hierarchical control. Nidhiry and Saravanan developed

a modified non-dominated sorting genetic algorithm (NSGA-II) for multi-objective

optimization and compared it with some existing algorithms [14]. Shah-Hosseini [15] in 2007

first introduced problem solving algorithm by IWD method. The basic mathematical model is

presented in this paper, then two more papers are presented in 2008 and 2009 [16, 17] in

Zhang, Liu, Moraca, Ojstersek: An Effective Use of Hybrid Metaheuristics Algorithm for …

646

which multiple knapsack problem (MKP) and TSP are solved by IWD. In the area of JSSP we

can see that a lot of work was done about integrating metaheuristic methods to solve thins

NP-hard problem. Crawford et al. [18] introduced a proposal of design of Ant Colony

Optimization algorithm paradigm using hyper-cube framework to solve the software project

scheduling problem. PSO algorithm for finding Pareto-frontier in multi-objective JSSP is

proposed by Wisittipanich and Kachitvichyanukul [19]. The objective of the paper is to

simultaneously minimize makespan and total tardiness of jobs. The solutions found by the

whole swarm are the new guidance for the particle movement. Sunder et al. [20] introduced a

hybrid artificial bee colony algorithm (ABC) for JSSP with no-wait constraint; the proposed

algorithm successfully coordinates initialization, selection and determination of the ABC with

the local search which brings high quality solutions. Park et al. used multi-criteria

optimization for the optimization of machining parameters [21]. Rodriguez-Tello et al. [22]

investigated the role of evaluation function used by metaheuristics for solving combinatorial

optimization problems.

3. SHUFFLED FROG-LEAPING ALGORITHM AND PATH RELINKING

3.1 Shuffled frog-leaping algorithm

The shuffled frog-leaping algorithm (SFLA) extends the shuffled complex evolution (SCE)

algorithm and the particle swarm optimization (PSO) algorithm applicable to continuous

optimization problems, it is a population-based and cooperative search metaphor inspired by

natural memetics [2, 3]. The SFLA is a memetic meta-heuristic for solving discrete

optimization problems [2, 3], e.g., the literature water distribution system problems [2], the

groundwater model calibration problem [3] and the job-shop scheduling problem [4]. In the

SFLA, a sample virtual population of frogs leaping in a swamp and searching for the optimum

location of food [3]. During the memetic evolution, the frogs are infected by other better ideas

and its memes are changed, resulting in a change in their position towards the goal [3].

3.2 Path relinking

The path relinking (PR) algorithm, as a population-based meta-heuristic and an intensification

strategy to explore trajectories connecting elite solutions, which solves a given problem using

purposeful and non-random exploration and exploitation strategies, is known as a powerful

solution methodology [5, 6]. The PR was originally proposed to improve solutions obtained

by tabu search or scatter search [5-7]. The PR is a major enhancement to heuristic search

methods for solving combinatorial optimization problems, can be added to any metaheuristic

algorithm, such as GRASP and genetic algorithms [6, 7]. Rahimi-Vahed et al. [5] propose an

efficient path relinking algorithm whose exploration and exploitation strategies enable the

algorithm to address the multi-depot periodic vehicle routing problem. Nguyen et al. [7] use

the PR to reinforce the proposed multi-start iterated local search for the two-echelon location-

routing problem. The main components of the general PR are the rules for building the

reference set, the rules for choosing the initial and guiding solutions and a neighbourhood

structure for moving along paths [5]. The PR can be classified into forward path relinking (the

initial and guiding solutions are set to Si = x2 and Sg = x1, respectively, where solution x1 with

better performance and solution x2 with worse performance), backward path relinking

(conversely, set to Si = x1 and Sg = x2) and back-and-forward path relinking (backward path-

relinking is applied first, followed by the forward path-relinking) [6]. As it moves along the

path, the size of the restricted neighbourhood progressively decreases, the PR explores the

neighbourhood of the initial solution more thoroughly than the guiding solution [6].

Zhang, Liu, Moraca, Ojstersek: An Effective Use of Hybrid Metaheuristics Algorithm for …

647

4. HYBRID METAHEURISTICS ALGORITHM WITH SFLA AND PR

4.1 Neighbourhood structures

The path relinking operator, as one of the most important components of the path relinking

approach, aims to generate new promising solutions by creating paths connecting two high-

quality parent solutions [8, 9]. Neighbourhood structure for moving along paths is the key for

the path relinking operator. A neighborhood is typically defined as transforming a solution to

generate an adjacent solution [9]. There are many commonly used neighbourhood structures,

for example, insertion, two adjacent elements insertion, swap and two adjacent elements swap

(see Fig. 1 a-d) [11]. Block-insertion, as the neighbourhood move used to generate the path, is

easy to generate a series of moves [10]. Yang et al. [9] employs two complementary

neighbourhood structures, insert move and swap move, can enhance the search effectiveness

by combining them together. To transform from one solution to another in the search space,

this paper employs two different neighbourhood structures, random block-insertion and

random block-swap, where a random number of adjacent elements is set as:

𝑏_𝑠𝑖𝑧𝑒 = 𝑟𝑎𝑛𝑑𝑖(𝑚𝑖𝑛(𝑗 − 𝑖, 𝑑 − 𝑗 + 1, 𝐵𝑚𝑎𝑥)) (1)

where i and j are two pre-selected positions, d is the dimension of decision variable for the

practical problem, Bmax is the maximum block size and randi(.) is a function to generate a

pseudorandom integer in the range [1, .], . means parameter of the function.

 The random block-insertion neighbourhood structure, denoted as NS1, is defined by

moving random number b_size adjacent elements from its original position to destination

position (see Fig. 1 f). Similarly, the random block-swap neighbourhood structure, denoted as

NS2, is defined by exchanging a random number b_size of two different adjacent elements

from its original position to the position of each other (see Fig. 1 g). The 2-opt, denoted as NS3,

as the most classical heuristic for the traveling salesman problem (TSP), is also considered as

a basic neighbourhood structure in this paper. The 2-opt neighbourhood structure generates a

new solution by reversing the order of the elements between two pre-selected positions (see

Fig. 1 e).

g

6 2 5 1 ... 4S' ... 3

6 3 5 1 2 ...S 4...

f

6 2 3 ... 1 4S' ... 5

6 3 5 1 2 ...S 4...

e

6 2 1 5 3 4S'

6 3 5 1 2 4S

d

6 2 4 1 3 5S'

6 3 5 1 2 4S

c

6 2 5 1 3 4S'

6 3 5 1 2 4S

b

6 2 4 3 5 1S'

6 3 5 1 2 4S

a

6 2 3 5 1 4S'

6 3 5 1 2 4S

Figure 1: Examples of the neighbourhood structures.

4.2 Hybrid SFLA with PR

The PR, as advanced hybridizations with more elaborate metaheuristic schemes, can be

applied to population-based stochastic local search algorithms as an advanced crossover or

combination operator [6]. During the local search for each memeplex in the SFLA, which is

frog-leaping, the best frog’s position and worst frog’s position in the submemeplex is

determined once a submemeplex is constructed. They are used to generate a new position to

improve the worst frog’s position, meanwhile, its performance. If it cannot produce a better

result, then the best frog’s position in the submemeplex will be replaced by the best frog’s

position in the memeplex, to generate a new position to improve the worst frog’s position. In

Zhang, Liu, Moraca, Ojstersek: An Effective Use of Hybrid Metaheuristics Algorithm for …

648

the two steps mentioned above, two positions are selected, which is also done during the PR

operating, means that the PR can be applied to the local search for each memeplex in the

SFLA as an advanced combination operator. In this paper, we present a random multi-

neighbourhood based shuffled frog-leaping algorithm with path relinking (RMN-SFLA-PR)

for solving combinatorial optimization problems. The applied order of the neighbourhood

structures in [11] is fixed, which is determined in advance. This paper applies random

neighbourhood structures size and randomly applied order of the neighbourhood structures.

The general procedures of RMN-SFLA-PR and RMN-PR are shown in algorithms 1 and 2.

Algorithm 1 Pseudo-code of RMN-SFLA-PR

Step 0 Initialize parameters. Setting for the SFLA: 𝑚, 𝑛, 𝑞, 𝑁, 𝐹 = 𝑚𝑛, 𝑑, 𝐶𝐺, 𝑚𝑖𝑛_𝑖𝑡𝑒, 𝑖𝑡𝑒 = 0 and

𝐶𝐺𝐶𝑜𝑢𝑛𝑡 = 0. The neighbourhood structures 𝑁𝑆 = {𝑁𝑆1, 𝑁𝑆2, 𝑁𝑆3} and 𝐵𝑚𝑎𝑥.

Step 1 Generate a virtual population. Generate 𝐹 virtual frogs and compute their fitness 𝑓.

Step 2 Rank frogs. Sort the 𝐹 frogs in decreasing order and record the best frog’s position 𝑃𝑋.

Step 3 Global search.

While 𝑖𝑡𝑒 < 𝑚𝑖𝑛_𝑖𝑡𝑒 or (𝐶𝐺𝐶𝑜𝑢𝑛𝑡 < 𝐶𝐺 and 𝑖𝑡𝑒 ≥ 𝑚𝑖𝑛_𝑖𝑡𝑒)

Step 4 Partition frogs into memeplexes.

For 𝑘 = 1: 𝑚

for 𝑗 = 1: 𝑛

𝑌(𝑘, 𝑗) = 𝐹(𝑘 + 𝑚(𝑗 − 1)), 𝑌𝑓(𝑘, 𝑗) = 𝑓(𝑘 + 𝑚(𝑗 − 1))

end

end

Step 5 Shuffle memeplexes.

For 𝑖𝑚 = 1: 𝑚

for 𝑖𝑁 = 1: 𝑁

Step 5.1 The submemeplex 𝑍 is formed by randomly selected 𝑞 distinct frogs. Record the best

and the worst 𝑊𝑖 frog’s position as 𝑃𝐵 and 𝑃𝑊 respectively:

𝑊𝑖 = 𝑚𝑎𝑥(𝑍), 𝑃𝐵 = 𝑌(𝑖𝑚, 𝑚𝑖𝑛(𝑍)), 𝑃𝑊 = 𝑌(𝑖𝑚, 𝑊𝑖)

Step 5.2 Determine the neighbourhood structures size 𝑛𝑠_𝑠𝑖𝑧𝑒, which is applied in the current

local search: 𝑛𝑠_𝑠𝑖𝑧𝑒 = 𝑟𝑎𝑛𝑑𝑖(𝑠𝑖𝑧𝑒(𝑁𝑆))

Step 5.3 Improve the worst frog’s position by Algorithm 2.
[𝑃𝑛, 𝑓𝑛] = 𝑅𝑀𝑁 − 𝑃𝑅(𝑃𝐵, 𝑃𝑊, 𝑌𝑓(𝑖𝑚, 𝑊𝑖), 𝑛𝑠_𝑠𝑖𝑧𝑒, 𝑁𝑆, 𝐵𝑚𝑎𝑥, 𝑑)

if 𝑓𝑛 < 𝑌𝑓(𝑖𝑚, 𝑊𝑖)

𝑌(𝑖𝑚, 𝑊𝑖) = 𝑃𝑛, 𝑌𝑓(𝑖𝑚, 𝑊𝑖) = 𝑓𝑛

else
[𝑃𝑛, 𝑓𝑛] = 𝑅𝑀𝑁 − 𝑃𝑅(𝑃𝑋, 𝑃𝑊, 𝑌𝑓(𝑖𝑚, 𝑊𝑖), 𝑛𝑠_𝑠𝑖𝑧𝑒, 𝑁𝑆, 𝐵𝑚𝑎𝑥, 𝑑)

if 𝑓𝑛 < 𝑌𝑓(𝑖𝑚, 𝑊𝑖)

𝑌(𝑖𝑚, 𝑊𝑖) = 𝑃𝑛, 𝑌𝑓(𝑖𝑚, 𝑊𝑖) = 𝑓𝑛

else

Randomly generate a new frog to replace the worst frog.

End

end

Step 5.4 Upgrade the memeplex 𝑌(𝑖𝑚) and sort in decreasing order.

End

end

Step 6 Shuffle memeplexes. Replace memeplexes into the 𝐹 frogs, sort in decreasing order and

update the best frog’s position 𝑃𝑋. Record the consecutive count 𝐶𝐺𝐶𝑜𝑢𝑛𝑡 and setting 𝑖𝑡𝑒 = 𝑖𝑡𝑒 + 1.

End

Algorithm 2 Pseudo-code of RMN-PR

Input: 𝑃𝐵, 𝑃𝑊, 𝑓_𝑊𝑖, 𝑛𝑠_𝑠𝑖𝑧𝑒, 𝑁𝑆, 𝐵𝑚𝑎𝑥 and 𝑑. Output: a new position 𝑃𝑛 and its performance 𝑓𝑛.

Step 0 Choose the initial and guiding solutions. Since backward path-relinking tends to perform the

best, the initial and guiding solutions are set: 𝑆𝑖 = 𝑃𝐵, 𝑆𝑔 = 𝑃𝑊, 𝑃𝑛 = [] and 𝑓𝑛 = 𝑓_𝑊𝑖.
Step 1 Multi-neighbourhood based PR.

Zhang, Liu, Moraca, Ojstersek: An Effective Use of Hybrid Metaheuristics Algorithm for …

649

While 𝑆𝑖 ≠ 𝑆𝑔

Step 2 Determine the applied order 𝑜𝑑 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑠𝑖𝑧𝑒(𝑁𝑆)) of the neighbourhood structures,

where 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(.) generates a vector containing a random permutation of the integers 1: 𝑠𝑖𝑧𝑒(𝑁𝑆).

For 𝑘 = 1: 𝑛𝑠_𝑠𝑖𝑧𝑒

Step 3 The current neighbourhood structure is set as 𝑛𝑠 = 𝑁𝑆(𝑜𝑑(𝑘)). Setting 𝑥 = 𝑆𝑖 and 𝑖 = 1.

While 𝑥 ≠ 𝑆𝑔

if 𝑥(𝑖) = 𝑆𝑔(𝑖)

𝑖 = 𝑖 + 1

else

for 𝑗 = 𝑖 + 1: 𝑑

if 𝑥(𝑗) = 𝑆𝑔(𝑖)

break;

end

end

Step 4 According to the neighbourhood structure 𝑛𝑠(𝑥, 𝑖, 𝑗, 𝑑, 𝐵𝑚𝑎𝑥), produce a new solution 𝑥

and compute its performance 𝑓𝑥.

If 𝑓𝑥 < 𝑓𝑛

𝑃𝑛 = 𝑥, 𝑓𝑛 = 𝑓𝑥

end

end

end

end

4.3 RMN-SFLA-PR test

In this paper, algorithms were implemented in MATLAB language. All experiments are

simulated in MATLAB version R2016b on a laptop with x64-processor Intel(R) Core(TM)2

Duo CPU P8700 2.53 GHz and 4 GB RAM in the environment of Windows 10 Version 1607

OS. For each instance, algorithms are independently run for 30 times.

 The TSP, as a most famous NP-hard problem in combinatorial optimization, is serviced as

a benchmark problem to evaluate the RMN-SFLA-PR. We select dj38 [23], berlin52 [24],

pr76 [24] and rd100 [24] as the benchmark instances. Their optimal tours have length

6659.43, 7544.37, 108159.44 and 7910.40, respectively. Fig. 2 shows the RMN-SFLA-PR

solution convergence for the benchmark instances.

Figure 2: The RMN-SFLA-PR convergences of the best solutions for the benchmark instances (the

horizontal dotted line is the length of the optimal tours for each instance).

Zhang, Liu, Moraca, Ojstersek: An Effective Use of Hybrid Metaheuristics Algorithm for …

650

The computational statistics of the fitness, the running time and the generation number of the

4 benchmark instances is shown in Table I and Table II, respectively. The proposed algorithm

tends to converge to the best fitness in each benchmark instance. The successful rate of the all

independent runs is 100 % in the dj38. And it can converge to global optimization in a very

short time. However, as the dimensions of the benchmark instances increase, the success rate

decreases, but meanwhile, the running time and the generation number increase. The

robustness of the proposed algorithm decreases as the dimension of the problem increases.

Table I: Computational statistics of the RMN-SFLA-PR on the fitness for the 4 benchmark instances.

Name Min Max Mean Standard deviation Success rate (%)

dj38 6659.43 6659.43 6659.43 0 100

berlin52 7544.37 7782.98 7583.79 74.68 76.67

pr76 108159.44 111375.83 109185.02 972.47 26.67

rd100 7910.40 8484.78 8117.39 140.25 3.33

Table II: Computational statistics of the RMN-SFLA-PR on the running time and the generation

number for the 4 benchmark instances.

Name

Running time (s) Number of generation

Min Max Mean
Standard

deviation
Min Max Mean

Standard

deviation

dj38 37.47 47.62 42.52 2.73 20 26 22.80 1.42

berlin52 56.55 83.63 67.65 6.69 26 37 30.27 2.94

pr76 122.58 220.13 146.26 21.32 39 72 48.93 7.01

rd100 225.08 373.52 270.52 36.61 49 88 62.47 8.80

5. COMPUTATIONAL EVALUATION

5.1 Solution coding

In this paper, the machines for the workers to check are represented by the index of the order

in the production line. In order to encode the workers into the coding, we set the dimension of

coding as d = machineNum + workerNum – 1, where machineNum is the number of machines

in the problems, workerNum is the number of workers in the problems. It means that if the

number of workers is more than 1, one or more decision variables, which are more than

machineNum, are used as separators. For example, there are 8 machines for the workers to

check, supposes we need two workers, a decision variable, its value is 9, is introduced into the

coding. In Fig. 3, the decision variable 9 is serviced as a separator, can be decoded as worker

1, checks the machines and its sequence is (8, 1, 2, 6, 3) and worker 2 checks the machines

and its sequence is (4, 5, 7).

8 1 6 3 4 52 9 7S

Figure 3: Example of the solution coding.

5.2 Computational experiment

A manufacturing enterprise placed in Slovenia, denoted as C, has two automated production

lines. They have the same machines, but the order of the machines on the production lines are

the opposite. But they still need workers to check the machines in the automated production

lines during their running. The number, name, position and checking time of the machines are

shown in Table III.

Zhang, Liu, Moraca, Ojstersek: An Effective Use of Hybrid Metaheuristics Algorithm for …

651

Table III: Data for the production lines in the manufacturing enterprise C.

No Name
Position

(x, y)

Checking

time (min)
No Name

Position

(x, y)

Checking

time (min)

1 Robot 1 (0, 1.5) 15 9 Robot 1’ (3, 28) 15

2 Thread rolling (0, 4.8) 17 10 Thread rolling’ (3, 26) 17

3 Induction slackening (0, 9.1) 17 11 Induction slackening’ (3, 22) 17

4 Hard turning (0, 13.5) 24 12 Hard turning’ (3, 16.5) 24

5 Hard milling (0, 16.5) 55 13 Hard milling’ (3, 13.5) 55

6 Groove milling (0, 22) 28 14 Groove milling’ (3, 9.1) 28

7 Groove controlling (0, 26) 17 15 Groove controlling’ (3, 4.8) 17

8 Robot 2 (0, 28) 17 16 Robot 2’ (3, 1.5) 17

 The time for the worker to walk from his current location of the machine i to his next

location of the machine j is set as:

𝑤𝑎𝑙𝑘𝑖𝑛𝑔_𝑡𝑖𝑚𝑒(𝑖, 𝑗) =
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑖 , 𝑚𝑗)

60 ∙ 𝑤𝑜𝑟𝑘𝑒𝑟𝑉𝑒𝑙
 (2)

where distance(.,.)is a function to compute the Euclidean distance between two machines and

workerVel represents the velocity of the workers walking which is set to 1.1 m/s.

 There are workerNum workers in the C responsible for checking the production lines. The

effective time for the worker k to work in one shift is set as:

𝑤𝑜𝑟𝑘𝑖𝑛𝑔_𝑡𝑖𝑚𝑒(𝑘) = ∑ 𝑤𝑎𝑙𝑘𝑖𝑛𝑔_𝑡𝑖𝑚𝑒(𝑘𝑖, 𝑘𝑖 + 1) + ∑ 𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑔_𝑡𝑖𝑚𝑒(𝑘𝑗)

𝑘𝑁𝑢𝑚

𝑘𝑗=1

𝑘𝑁𝑢𝑚−1

𝑘𝑖=1

 (3)

where kNum represents the number of the machines required for the worker k to check, ki,

ki + 1 and kj represents the ki
th

, (ki + 1)
th

 and kj
th

 machines in the checking sequence of worker

k, respectively, and checking_time(kj) represents the time required for the worker to check the

machine kj.

 In the actual production process, each worker needs to complete a check in one shift. The

effective working time of one shift in the C is 425 min, denoted as shift_time. So each

worker’s working time should be less than or equal to the shift_time. That is, the maximum

worker’s working time should be no more than the shift_time. The maximum worker’s

working time can be expressed as:

𝑚𝑎𝑥_𝑤𝑜𝑟𝑘𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 = 𝑚𝑎𝑥(𝑤𝑜𝑟𝑘𝑖𝑛𝑔_𝑡𝑖𝑚𝑒) (4)

 The constraint can be expressed as:

𝑚𝑎𝑥_𝑤𝑜𝑟𝑘𝑖𝑛𝑔_𝑡𝑖𝑚𝑒 ≤ 𝑠ℎ𝑖𝑓𝑡_𝑡𝑖𝑚𝑒 (5)

 In this case, the number of workers, the number of machines for each worker to check and

the checking sequence of the machines for each worker can affect the worker’s effective

working time, thereby affecting the maximum worker’s working time. Therefore, at the pre-

determined number of the workers, it is possible to optimize the number of machines for each

worker to check and their checking sequence of the machines. The optimization objective

function can be expressed as:

𝑓 = 𝑚𝑖𝑛(max_𝑤𝑜𝑟𝑘𝑖𝑛𝑔_𝑡𝑖𝑚𝑒) (6)

 Once the optimal solution is obtained at the pre-determined number of the workers,

denoted as best_fitness, the comparison can be made with the working time in one shift

shift_time. If best_fitness  shift_time, the pre-determined number of workers is sufficient.

Otherwise, it is not enough. In order to determine the optimal number of workers, we can

Zhang, Liu, Moraca, Ojstersek: An Effective Use of Hybrid Metaheuristics Algorithm for …

652

reduce or increase the number of workers. We get the optimal number of workers when the

following conditions are met:

{
𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑤𝑜𝑟𝑘𝑒𝑟𝑁𝑢𝑚) ≤ 𝑠ℎ𝑖𝑓𝑡_𝑡𝑖𝑚𝑒

𝑏𝑒𝑠𝑡_𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑤𝑜𝑟𝑘𝑒𝑟𝑁𝑢𝑚 − 1) > 𝑠ℎ𝑖𝑓𝑡_𝑡𝑖𝑚𝑒
 (7)

When the above conditions are met, the pre-determined number workerNum is the optimal

number of workers.

5.3 Experimental results

For comparison, the JSSP was also solved by the SFLA and the intelligent water drops (IWD)

algorithm. To evolve the solution, an operation similar to the modified precedence operation

crossover, which is proposed by Xu et al. [4] in 2013, is applied to the local search of the

SFLA. The IWD algorithm, as a swarm-based optimization algorithm, was inspired from

observing natural water drops that flow in rivers for solving the TSP [15-17]. The IWD

algorithm was first proposed by Shah-Hosseini in 2007 and then improved by him in 2008,

denoted as IWD1 [15] and IWD2 [16], respectively. During the process of constructing a

solution for each IWD in the IWD algorithm, the amount of soil on edges is used. It means

that if the number of workers is more than 1, the soil of the edges between the one or more

decision variables that are used as separators and the others are needed. The amount of soil

between the two normal decision variables i and j in the JSSP is set as:

𝑠𝑜𝑖𝑙(𝑖, 𝑗) = 𝑤𝑎𝑙𝑘𝑖𝑛𝑔_𝑡𝑖𝑚𝑒(𝑖, 𝑗) + 𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑔_𝑡𝑖𝑚𝑒(𝑗) (8)

 In the IWD algorithm, the probability of a path for being selected is inversely proportional

to the amount of soil it has. The one or more virtual decision variables, which are used as

separators, are preferred to be selected during the movement of the IWD for constructing a

solution, rather than at the beginning or end. The amount of soil between the virtual decision

variables and the others in the JSSP is set as:

𝑠𝑜𝑖𝑙(𝑖, 𝑗) = 𝑚𝑒𝑎𝑛(𝑤𝑎𝑙𝑘𝑖𝑛𝑔_𝑡𝑖𝑚𝑒) + 𝑚𝑒𝑎𝑛(𝑐ℎ𝑒𝑐𝑘𝑖𝑛𝑔_𝑡𝑖𝑚𝑒) (9)

where at least one of i and j is a virtual decision variable, the function mean(.) returns the

mean value of its arguments.

 According to [2, 3] and experiment, these parameter values are determined for the RMN-

SFLA-PR: m = 50, n = 15, q = 10, N = 20, CG = 10, min_ite = 10 and Bmax = 3. The parameter

values of the SFLA are set the same as at the RMN-SFLA-PR, except for the min_ite, which

is set to 300. Meanwhile, the parameter values of the IWD1 and IWD2 are set to the same as

in [15] and [17], and the CG is also set the same as at the RMN-SFLA-PR while the min_ite is

set to 3000.

 The 4 algorithms' solution convergences for the JSSP with 1 and 2 workers are shown in

Figs. 5 and 6, respectively. Fig. 7 shows the statistical analysis of the 4 algorithms for the

JSSP with 1 and 2 workers. The computational statistics of the fitness, the running time and

the generation number of the 4 algorithms, for the JSSP with 1 worker are shown in Table IV

and Table V, and for the JSSP with 2 workers are shown in Table VI and Table VII,

respectively. The RMN-SFLA-PR for the JSSP with 1 worker converges to 380.75 min. It

means that 1 worker can finish checking all machines on the production lines in at least

380.75 min. For instance, the solution for the JSSP with 1 worker is shown in Fig. 4, S1. The

RMN-SFLA-PR for the JSSP with 2 workers converges to 190.36 min. An instance of the

solution for the JSSP with 2 workers is shown in Fig. 4, S2. That means, if there are 2

workers, they can complete in at least 190.36 min to check all the machines on the production

lines. A worker can complete all the machines checks within the working time in one shift. So,

only one worker in one shift is enough in the theory.

Zhang, Liu, Moraca, Ojstersek: An Effective Use of Hybrid Metaheuristics Algorithm for …

653

7 8 9 10 11S1 6 5 12 13 4 3 14 15 2 1 16

11 10 9 8 7S2 6 5 12 17 1 16 15 2 3 14 13 4

Figure 4: Instances for the solutions of the JSSP (the numbers represent the no in Table III and the

number 17 is used as a separator in the S2).

Figure 5: The 4 algorithms convergences of the best solutions for the JSSP with 1 worker.

Figure 6: The 4 algorithms convergences of the best solutions for the JSSP with 2 workers.

 The proposed algorithm tends to converge to the best fitness in both the JSSP with 1 and 2

workers. Its performance is the best in the 4 algorithms. The successful rate of all independent

runs was 100 % in the proposed algorithm for both the JSSP with 1 and 2 workers. The

performance of the SFLA is better, whose success rates for the JSSP with 1 and 2 workers is

46.67 % and 56.67 %, respectively. The IWD1 and the IWD2 perform the worst in both the

JSSP with 1 and 2 workers, even cannot get the optimal solution. In the robustness of the

Zhang, Liu, Moraca, Ojstersek: An Effective Use of Hybrid Metaheuristics Algorithm for …

654

algorithms for both the JSSP with 1 and 2 workers, the best is also the proposed algorithm,

followed by the SFLA, and the worst is the IWD1 and the IWD2. The robustness of the IWD1

for the JSSP with 1 worker is worse than the IWD2 but it is opposite for the JSSP with 2

workers. However, the IWD1 is more stable than the IWD2 in the robustness for both the

JSSP with 1 and 2 workers. In the running time and the generation number for the JSSP with

1 and 2 workers, the algorithm presented in this paper is very time-friendly, but the other

algorithms are more time consuming. The average running time of the proposed algorithm is

almost one-tenth of the others. In both the JSSP with 1 and 2 workers, the average running

times of the SFLA, the IWD1 and the IWD2 are almost the same. Although the average

running time of the SFLA is more than both the IWD1 and the IWD2, it can obtain an optimal

solution with almost 50 % probability in the all independent runs. The proposed algorithm is

better than the others in both the JSSP with 1 and 2 workers.

Figure 7: Statistical analysis of the 4 algorithms for the JSSP with 1 and 2 workers.

Table IV: Computational statistics of the 4 algorithms on the fitness for the JSSP with 1 worker.

Name Min Max Mean Standard deviation Success rate (%)

RMN-SFLA-PR 380.75 380.75 380.75 0 100

SFLA 380.75 380.82 380.77 0.02 46.67

IWD1 381.34 381.69 381.51 0.09 0

IWD2 380.90 381.31 381.03 0.11 0

Table V: Computational statistics of the 4 algorithms on the running time and the generation

number for the JSSP with 1 worker.

Name

Running time (s) Number of generation

Min Max Mean
Standard

deviation
Min Max Mean

Standard

deviation

RMN-SFLA-PR 9.49 11.45 10.19 0.56 13 15 13.73 0.69

SFLA 116.36 133.73 120.42 3.84 300 300 300 0

IWD1 90.13 93.17 90.91 0.55 3000 3000 3000 0

IWD2 86.33 87.45 86.71 0.33 3000 3000 3000 0

Table VI: Computational statistics of the 4 algorithms on the fitness for the JSSP with 2 workers.

Name Min Max Mean Standard deviation Success rate (%)

RMN-SFLA-PR 190.36 190.36 190.36 0 100

SFLA 190.36 190.46 190.38 0.03 56.67

IWD1 190.52 190.97 190.74 0.10 0

IWD2 190.63 191.41 190.94 0.19 0

Zhang, Liu, Moraca, Ojstersek: An Effective Use of Hybrid Metaheuristics Algorithm for …

655

Table VII: Computational statistics of the 4 algorithms on the running time and the generation

number for the JSSP with 2 workers.

Name

Running time (s) Number of generation

Min Max Mean
Standard

deviation
Min Max Mean

Standard

deviation

RMN-SFLA-PR 11.84 15.99 13.57 0.95 14 19 16.37 1.13

SFLA 121.50 129.52 123.82 1.81 300 300 300 0

IWD1 101.20 119.69 105.72 5.32 3000 3000 3000 0

IWD2 105.94 109.39 107.28 0.75 3000 3000 3000 0

6. SIMULATION

Our simulation model was created in discrete simulation environment Simio. Real life model

of factory line C is presented in simulation model shown in Fig. 8. On the left of the figure,

we can see the Simio 3D model of the production line. We put all necessary real world data

from the production line to the simulation model: number of machine center (machine center

parameters: utilization, number of produced peaces/h and time between failures), distances,

times and number of workers which was calculated by RMN-SFLA-PR algorithm. On the

right of the figure, we can see the 3D model of the production line drawn in the Autodesk

Factory Design Suite.

Figure 8: 3D models – in Simio (left) and in Autodesk Factory Design Suite (right).

 In the theory, the C needs only one worker (calculated by RMN-SFLA-PR algorithm) to

complete all the machines check in one shift. However, in the simulation of the Simio

software, the performance of the machines is 85 %, that is, the effective working time of the

machines (and workers) in one shift is set as:

𝑚𝑎𝑐ℎ𝑖𝑛𝑒_𝑡𝑖𝑚𝑒 = 𝑠ℎ𝑖𝑓𝑡_𝑡𝑖𝑚𝑒 ∙ 85 % = 361.25 min (10)

 The effective working time of the machines is 361.25 min in one shift. In this case, one

worker is not enough to complete all the machines check in one shift. And taking into account

the emergency situations that may occur during the production lines running, it is

recommended to hire two workers to check the machines in one shift.

7. CONCLUSION

In this paper, we propose a random multi-neighbourhood based shuffled frog-leaping

algorithm with path relinking for solving combinatorial optimization problems. The proposed

RMN-SFLA-PR includes two different neighbourhood structures with random size block

Zhang, Liu, Moraca, Ojstersek: An Effective Use of Hybrid Metaheuristics Algorithm for …

656

operation, a random structure size and applied order of the multi-neighbourhood based local

search strategy and a path relinking based local search guiding strategy.

 We tested the proposed RMN-SFLA-PR on a set of 4 benchmark instances of the TSP.

Computational results show that our algorithm is highly effective, especially in the cases of

low-dimensional. For all instances, our proposed algorithm is always able to find the optimal

or near optimal tours. Specifically, the successful rate of all independent runs is 100 % in the

low-dimensional cases of the 4 benchmark instances. We apply the proposed RMN-SFLA-PR

to solve the JSSP. The RMN-SFLA-PR performance was compared with the SFLA and the

two IWD algorithms for the JSSP with 1 and 2 workers. The results for the applications show

that the proposed RMN-SFLA-PR performed better than the others and was more robust in

determining the global optimal solution and finding the solution speed. Followed by the

SFLA, its performance is not as good as the proposed algorithm, but better than the two IWD

algorithms, although it needs a relatively maximum running time. And both the IWD1 and the

IWD2 performed poorly, whether its success rate or robustness.

 Computational results show that one worker is enough to complete all the machines check

in one shift for the C in the theory. However, we can see that the efficiency of the machine is

only 85 %, tested by the Simio simulation. In addition, we should also need to consider the

unexpected situations that may occur during the production lines running. Therefore, we

recommend that the C employs two workers instead of one to check the machines in one shift.

 One direction to extend this work is to more extensively test the proposed algorithm.

Another is to improve the success rate of the proposed algorithm in the high-dimensional

problem; such as improving the strategy for generating new solutions and the guiding strategy

for local search, to increase the diversity of the proposed algorithm to escape from a local

optimum.

ACKNOWLEDGEMENT

The study is supported by a project funded by the China Postdoctoral Science Foundation

(043201003), by Beijing Natural Science Foundation (041501108), by National Natural Science

Foundation (71132008, 71390334) and by Slovenian Research Agency (ARRS), founding No. P2-190.

REFERENCES

[1] Schwab, K. (2016). The fourth industrial revolution, Word Economic Forum, Geneva

[2] Eusuff, M. M.; Lansey, K. E. (2003). Optimization of water distribution network design using the

shuffled frog leaping algorithm, Journal of Water Resources Planning and Management, Vol.

129, No. 3, 210-225, doi:10.1061/(ASCE)0733-9496(2003)129:3(210)

[3] Eusuff, M.; Lansey, K.; Pasha, F. (2006). Shuffled frog-leaping algorithm: a memetic meta-

heuristic for discrete optimization, Engineering Optimization, Vol. 38, No. 2, 129-154,

doi:10.1080/03052150500384759

[4] Xu, Y.; Wang, L.; Wang, S. (2013). An effective shuffled frog-leaping algorithm for the flexible

job-shop scheduling problem, Proceedings of the 2013 IEEE Symposium on Computational

Intelligence in Control and Automation, 128-134, doi:10.1109/CICA.2013.6611673

[5] Rahimi-Vahed, A.; Crainic, T. G.; Gendreau, M.; Rei, W. (2013). A path relinking algorithm for

a multi-depot periodic vehicle routing problem, Journal of Heuristics, Vol. 19, No. 3, 497-524,

doi:10.1007/s10732-013-9221-2

[6] Ribeiro, C. C.; Resende, M. G. C. (2012). Path-relinking intensification methods for stochastic

local search algorithms, Journal of Heuristics, Vol. 18, No. 2, 193-214, doi:10.1007/s10732-011-

9167-1

[7] Nguyen, V.-P.; Prins, C.; Prodhon, C. (2012). A multi-start iterated local search with tabu list and

path relinking for the two-echelon location-routing problem, Engineering Applications of

Artificial Intelligence, Vol. 25, No. 1, 56-71, doi:10.1016/j.engappai.2011.09.012

https://doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)
https://doi.org/10.1080/03052150500384759
https://doi.org/10.1109/CICA.2013.6611673
https://doi.org/10.1007/s10732-013-9221-2
https://doi.org/10.1007/s10732-011-9167-1
https://doi.org/10.1007/s10732-011-9167-1
https://doi.org/10.1016/j.engappai.2011.09.012

Zhang, Liu, Moraca, Ojstersek: An Effective Use of Hybrid Metaheuristics Algorithm for …

657

[8] Lai, X.; Hao, J.-K. (2015). Path relinking for the fixed spectrum frequency assignment problem,

Expert Systems with Applications, Vol. 42, No. 10, 4755-4767, doi:10.1016/j.eswa.2015.01.025

[9] Yang, Z.; Zhang, G.; Zhu, H. (2016). Multi-neighborhood based path relinking for two-sided

assembly line balancing problem, Journal of Combinatorial Optimization, Vol. 32, No. 2, 396-

415, doi:10.1007/s10878-015-9959-6

[10] Luiz Usberti, F.; Morelato França, P.; Morelato França, A. L. (2013). GRASP with evolutionary

path-relinking for the capacitated arc routing problem, Computers & Operations Research, Vol.

40, No. 12, 3206-3217, doi:10.1016/j.cor.2011.10.014

[11] Chaves, A. A.; Lorena, L. A. N.; Senne, E. L. F.; Resende, M. G. C. (2016). Hybrid method with

CS and BRKGA applied to the minimization of tool switches problem, Computers & Operations

Research, Vol. 67, 174-183, doi:10.1016/j.cor.2015.10.009

[12] Li, Y.; Yao, X.; Zhou, J. (2016). Multi-objective optimization of cloud manufacturing service

composition with cloud-entropy enhanced genetic algorithm, Strojniski vestnik – Journal of

Mechanical Engineering, Vol. 62, No. 10, 577-590, doi:10.5545/sv-jme.2016.3545

[13] Varga, B.; Nemeth, B.; Gaspar, P. (2015). Design of anti-roll bar systems based on hierarchical

control, Strojniski vestnik – Journal of Mechanical Engineering, Vol. 61, No. 6, 374-382,

doi:10.5545/sv-jme.2014.2224

[14] Nidhiry, N. M.; Saravanan, R. (2014). Scheduling optimization of a flexible manufacturing

system using a modified NSGA-II algorithm, Advances in Production Engineering &

Management, Vol. 9, No. 3, 139-151, doi:10.14743/apem2014.3.183

[15] Shah-Hosseini, H. (2007). Problem solving by intelligent water drops, Proceedings of the IEEE

Congress on Evolutionary Computation 2007, 3226-3231, doi:10.1109/CEC.2007.4424885

[16] Shah-Hosseini, H. (2008). Intelligent water drops algorithm: A new optimization method for

solving the multiple knapsack problem, International Journal of Intelligent Computing and

Cybernetics, Vol. 1, No. 2, 193-212, doi:10.1108/17563780810874717

[17] Shah-Hosseini, H. (2009). The intelligent water drops algorithm: a nature-inspired swarm-based

optimization algorithm, International Journal of Bio-Inspired Computation, Vol. 1, No. 1/2, 71-

79, doi:10.1504/IJBIC.2009.022775

[18] Crawford, B.; Soto, R.; Johnson, F.; Misra, S.; Paredes, F.; Olguín, E. (2015). Software project

scheduling using the hyper-cube ant colony optimization algorithm, Technical Gazette, Vol. 22,

No. 5, 1171-1178, doi:10.17559/TV-20140519212813

[19] Wisittipanich, W.; Kachitvichyanukul, V. (2013). An efficient PSO algorithm for finding Pareto-

frontier in multi-objective job shop scheduling problems, Industrial Engineering and

Management Systems, Vol. 12, No. 2, 151-160, doi:10.7232/iems.2013.12.2.151

[20] Sundar, S.; Suganthan, P. N.; Jin, C. T.; Xiang, C. T.; Soon, C. C. (2017). A hybrid artificial bee

colony algorithm for the job-shop scheduling problem with no-wait constraint, Soft Computing,

Vol. 21, No. 5, 1193-1202, doi:10.1007/s00500-015-1852-9

[21] Park, H.-S.; Nguyen, T.-T.; Kim, J.-C. (2016). An energy efficient turning process for hardened

material with multi-criteria optimization, Transactions of FAMENA, Vol. 40, No. 1, 1-14

[22] Rodriguez-Tello, E.; Hao, J.-K.; Romero-Monsivais, H. (2015). Boosting the performance of

metaheuristics for the MinLA problem using a more discriminating evaluation function,

Technical Gazette, Vol. 22, No. 1, 11-24, doi:10.17559/TV-20130905130612

[23] University of Waterloo. National Traveling Salesman Problems, from http://www.math.

uwaterloo.ca/tsp/world/countries.html, accessed on 10-03-2017

[24] University of Heidelberg. TSPLIB95, from http://comopt.ifi.uni-heidelberg.de/software/

TSPLIB95/tsp/, last modified on 06-08-2008, accessed on 01-02-2017

https://doi.org/10.1016/j.eswa.2015.01.025
https://doi.org/10.1007/s10878-015-9959-6
https://doi.org/10.1016/j.cor.2011.10.014
https://doi.org/10.1016/j.cor.2015.10.009
https://doi.org/10.5545/sv-jme.2016.3545
https://doi.org/10.5545/sv-jme.2014.2224
https://doi.org/10.14743/apem2014.3.183
https://doi.org/10.1109/CEC.2007.4424885
https://doi.org/10.1108/17563780810874717
https://doi.org/10.1504/IJBIC.2009.022775
https://doi.org/10.17559/TV-20140519212813
https://doi.org/10.7232/iems.2013.12.2.151
https://doi.org/10.1007/s00500-015-1852-9
https://doi.org/10.17559/TV-20130905130612

