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Abstract 

JaamSim is a prominent, discrete-event simulator with an established and fast growing community of 

users. To the authors’ knowledge, no simulation optimisation package was available for JaamSim up 

to now. For the purposes of this research, we developed the open-source software JSOptimizer that 

can be used to optimise simulation models of complex engineering systems built with JaamSim. The 

proposed tool utilises the jMetal framework, a well-known and validated library of meta-heuristic 

optimisation algorithms. The contribution of this article is twofold. First, we present the most 

important aspects of the proposed software JSOptimizer. Secondly, we examine a novel, multi-

objective problem pertaining to a stochastic manufacturing system which involves production control 

and job routing decisions. Several instances of the optimisation problem are solved and the resulting 

local non-dominated sets are compared under various performance metrics by utilizing the 

functionalities of JSOptimizer. This investigation also serves as a proof of concept for the proposed 

software’s applicability. 
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1. INTRODUCTION 

Discrete event simulation (DES) is a powerful tool for modelling complex dynamic systems. 

Prominent applications of DES pertain to queueing, manufacturing [1-3] and transportation 

systems. By means of DES, the behaviour of a modelled system can be studied under 

alternative control parameters. Nevertheless, the ultimate goal of the simulation engineer is to 

obtain the optimal configuration of the underlying system. To this end, simulation 

optimisation (SO), i.e. the practice of interfacing simulation models with optimisation 

algorithms, has received widespread adoption by simulation practitioners. Applications of SO 

span from staff scheduling [4] and manufacturing [5], to traffic control [6] and mechanical 

design [7], among others. 

      The optimisation algorithms used in this context are also quite disparate. Broad categories 

in which they can be classified include procedures for discrete [8] or continuous [9] 

optimisation problems, black – box [10] or model – based [11] optimisers, local [12] or global 

[13, 14] optimisation algorithms, and so forth. A comprehensive taxonomy of methods used 

in SO can be found in [15]. In this sea of alternative optimisation approaches, evolutionary 

algorithms (EAs) hold a noticeable position because of their inherent features which 

constitute them especially well-suited for SO applications [16]. For that reason, EA 

optimisation modules are incorporated in several commercial simulation software such as the 

SimEvents library by Mathworks, the ExtendSim simulator by Imagine That, Inc., etc. [15]. 

      JaamSim is an open-source and prominent discrete event simulator [17]. JaamSim offers a 

wide range of attractive features (refer to http://jaamsim.com/ for examples) that resulted in 

the growing adoption of this software by the simulation community in recent years. 
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Nevertheless, and up to now, JaamSim is not endowed with an optimisation module, contrary 

to the most prevalent simulation software. 

      In this research we solve this problem by developing the JSOptimizer software for 

optimizing simulation models built with JaamSim. The SO is carried out by means of multi-

objective EAs, and to this end, JSOptimizer utilises the jMetal framework [18], an open-

source and well-established library of metaheuristic optimisation algorithms. JSOptimizer is 

open-source, freely available (https://github.com/dkatsios/JSOptimizer) and fully 

customizable/extendable. The proposed tool is user-friendly and provides increased flexibility 

in defining a SO problem. It allows handling complex SO problems pertaining to engineering 

systems, where a solution to such a problem amounts to a disruptive change in the logic of the 

underlying simulation model. JSOptimizer provides functionalities for assessing the output of 

the optimisation procedures under various metrics such as hypervolume, generalised spread, 

generational distance etc. [18]. 

      The proposed tool has the potential to find applications in a wide range of SO problems. 

As a proof of JSOptimizer’s advanced functionalities, we provide a detailed report of the 

constrained, multi-objective optimisation of a stochastic production/inventory system. The 

underlying optimization problem is quite singular and complex as it pertains to the 

simultaneous optimization of both the control parameters of pull-type control policies (such as 

Kanban) and the job routing/capacity in each stage. 

     The primary contribution of this research is the introduction of the JSOptimizer software 

which is of high reference value to the discrete-event simulation community. The secondary 

contribution of this research is the examination of the aforementioned optimization problem, 

which has not been studied in the existing literature, to the best of the authors’ knowledge. 

      This article is structured as follows: the software’s prominent features and functionalities 

are discussed in section 2. In section 3 the structure of JSOptimizer’s source code is 

presented. Section 4 presents an application of JSOptimizer to a production/inventory control 

problem. The paper’s concluding remarks along with possible application areas and directions 

for future research are given in section 5. 

2. JSOPTIMIZER FEATURES AND USAGE 

JSOptimizer is written in Java and consists of a single executable file (.jar) which can be 

copied directly to the user’s computer. The only requirement in order to run the software is 

the installation of the Java Runtime Environment (version JRE 8). JSOptimizer has been 

tested and runs under the following operating systems: Windows 7 and 10 (32/64-bit 

versions), Linux openSUSE/Ubuntu. It comes with a user-friendly multi-form GUI and offers 

a rich variety of features at a minimum cost in terms of familiarization with its usage. 

2.1  Input/output data 

JaamSim models are imported to the proposed software so as to be optimised (Fig. 1). 

JaamSim saves simulation models as configuration files (.cfg) which document all simulation 

objects, their parameter values, the length of simulation model replications, etc. Note that a 

JaamSim configuration file might refer to other .cfg files using Include statements (the 

underlying simulation model is built by combining data from multiple .cfg files). JSOptimizer 

provides functionalities that handle this case as well as manually edited .cfg files in order to 

reconstruct the base configuration file properly. 

      Previous SO problem configurations (definitions of decision variables, objective functions 

and constraints) can be saved by JSOptimizer as .jsopt files. The user is given the option to 

load an existing configuration in the “Import model” form (Fig. 1). When loading a .jsopt file 

the user is prompted to select the associated .cfg file. This feature of JSOptimizer enables the 
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user to switch quickly from one instance to another (stored in the relevant .cfg files) of the 

same optimisation problem (defined in the .jsopt file). 

      After completing an optimisation run the “raw” values, i.e. plain numbers with no units or 

other descriptions, of the decision variables found by the optimisation algorithm along with 

the associated objective function values are printed in two text files named VAR and FUN, 

respectively. JSOptimizer also creates a human readable .log file that contains the full path of 

the simulation model that was optimised, the selected search algorithm along with its 

parameters and the duration of the optimisation. The log file also contains the computed 

Pareto front including descriptions of the objective functions/decision variables together with 

the associated evaluations of the constraint functions (if any). 

      JSOptimizer provides functionalities for comparing local Pareto fronts generated in prior 

optimisation runs in respect to the metrics of epsilon, hypervolume, generalised spread, 

generational distance, and inverted generational distance [20]. The user is prompted to select 

the text files that contain local non-dominated sets (files of type FUN) in the “Import model” 

form (Fig. 1). The results of the comparison together with the global Pareto front (in respect 

to the local fronts that are compared) are printed in the ComparisonResults.txt file which is 

created in the same directory as the JSOptimizer executable. 

 

Figure 1: “Import model” form of JSOptimizer software. 

2.2  Defining decision variables 

The parameters of the simulation model that can be set as decision variables in a SO problem 

are any attributes, i.e. parameters of the objects that comprise the imported JaamSim model. 

Object attributes cannot be used as decision variables in JSOptimizer without prior 

initialization in JaamSim. JSOptimizer supports all built-in attribute data types of JaamSim, 

including standard data types (integer, real, boolean) and JaamSim-specific custom data types. 

      Note that user-defined attributes may also be assigned to JaamSim objects when building 

a simulation model. A significant feature of JSOptimizer is that it supports decision variables 

which are user-defined simulation object attributes, allowing for increased flexibility in 

defining a SO problem. Another important feature of JSOptimizer is that it supports decision 

variables (object attributes) which assume values of type “JaamSim object” rather than 

numerical values. An example of such an attribute is the NextComponent parameter of a 

JaamSim object whose value defines the destination (some other object) of simulation entities 

that “depart” from it (refer to [17]) for further details). This feature renders JSOptimizer well-

suited for handling complex SO problems, where a solution to such a problem amounts to a 

disruptive change in the logic of the underlying simulation model. A relevant example is 

discussed in section 4.4. 
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      The user can define the decision variables of the optimisation problem in the “Categories 

Selection”, “Objects Selection” and “Attributes Selection” forms of JSOptimizer’s GUI 

(illustrations of these three forms are not provided due to space limitations). This feature of 

JSOptimizer is broken down into three distinct forms for ease-of-use, since a JaamSim model 

may well consist of hundreds of objects with thousands of attributes. JSOptimizer 

automatically handles all necessary data type conversions so that the defined decision 

variables can be utilised by the available optimisation algorithms. 

2.3  Defining constraints and objective functions 

In the “Decision Variable Constraint Selection” form (not presented graphically because of 

space limitations), the search space for all decision variables is set. Bound constraints of 

decision variables with numerical values are entered by using the boxes labelled “min” and 

“max”. The search space for decision variables of type “JaamSim object” is set by selecting 

their feasible values from the centre pane of this form. 

      The expressions of the objective functions and constraints (except the bound constraints of 

the decision variables) are defined in the JaamSim model. Their evaluations are passed to 

JSOptimizer by entering them in the RunOutputList parameter of the simulation’s model 

Simulation object. In the “Optimisation Parameters Selection” form (Fig. 2), the user selects 

from the drop-down list “JaamSim outputs” the simulation model outputs which are used as 

evaluations of the objective functions and of the functions that define constraints. 

 

Figure 2: “Optimisation Parameters Selection” form of JSOptimizer software. 

2.4  Configuring solution procedure and launching the optimisation run 

Multi-objective, constrained/unconstrained problems with binary/integer/real/mixed decision 

variables can be attacked by using an optimisation algorithm from a wide range of available 

methods. The available methods are all multi-objective algorithms included in the jMetal 

framework, version 4.5, with the exception of the parallel/multithreaded implementations 

(refer to http://jmetal.sourceforge.net/algorithms.html for further details). 

      The user selects the optimisation algorithm that will be applied to solve the problem along 

with its parameters in the “Optimisation Parameters Selection” form (Fig. 2). Clicking “Next” 

in this form displays the last form of the GUI that launches the optimisation run. 

 

http://jmetal.sourceforge.net/algorithms.html
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3. JSOPTIMIZER ARCHITECTURE 

The structure of the JSOptimizer project is the following: i) there are two folders with source 

code packages named jsOptimizer and JMETALHOME, ii) a folder named 

metaheuristicsConf which contains the JaamSim.jar file (version 2016-08) and the 

configuration files of the available optimisation algorithms (.conf files). Note that, the SWT 

graphics libraries (https://www.eclipse.org/swt/) that support the implementation of 

JSOptimizer’s GUI must be linked to the project. 

      The jsOptimizer folder contains the bulk of the proposed software’s source code. The 

JMETALHOME folder contains the source code of the jMetal framework which has been 

subjected to a series of modifications, primarily to implement the necessary interface with 

JaamSim simulation models and add support for mixed integer/real decision variables in 

specific optimisation algorithms and genetic operators. The proposed software’s 

implementation is outlined in sections 3.1 – 3.2. Fig. 3 gives a graphical description, in broad 

terms, of the functions performed when running JSOptimizer. 

 

Figure 3: Flowchart of JSOptimizer execution. 

3.1  Structure of jsOptimizer 

The Java classes of folder jsOptimizer are divided, in respect to their type and function, into 

four packages named jsObjectType, uiDataPreparators, uiOutputHandlers, and userInterface. 

 package jsObjectType: contains classes which define new data types. These data types are 

used to store data pertaining to the objects that comprise the JaamSim simulation model 

which is intended for optimisation (attributes, parameter values, simulation output etc.). 

Furthermore, this package implements the functionality of storing the configuration of a 

SO problem in a .jsopt file. 

 package uiDataPreparators: the classes of this package facilitate the extraction of data 

from the imported .cfg files and their pre-processing. Furthermore, this package provides 

https://www.eclipse.org/swt/
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support for all attribute data types of JaamSim. Finally, it contains a class responsible for 

making a copy of the imported .cfg file in a folder named TMP that is created in the same 

directory as the JSOptimizer executable. The copied .cfg file is modified in order to 

execute the simulation as quickly as possible (e.g. by launching it in the background, 

setting the RealTime variable to FALSE, deleting all attributes related to the visualization 

of simulation objects in the JaamSim GUI etc.). 

 package userInterface: this package contains classes responsible for creating and managing 

the GUI of the JSOptimizer software, including the SWT graphic libraries. Additionally, it 

incorporates a class that launches jMetal to initiate the optimisation. 

 package uiOutputHandlers: the classes of this package facilitate the data manipulation and 

exchange between JaamSim and jMetal during the optimisation process. The candidate 

solutions generated by jMetal’s optimisation algorithms are passed to JaamSim for 

evaluation by means of modifying the copied .cfg file in the TMP folder. JaamSim runs the 

simulation model for a candidate solution and returns the values of the objective functions 

and constraints to jMetal. Moreover, this package facilitates the serialization, storage and 

retrieval of .jsopt files and it also contains methods for comparing alternative local Pareto 

fronts using the relevant functionalities of the jMetal framework. 

3.2  Overview of JMETALHOME 

The JMETALHOME folder contains the source code of the jMetal framework which was 

modified accordingly for the needs of the proposed software. The relevant modifications are 

listed below. 

 class JaamSimProblem: this class was added in package jmetal.problems of the jMetal 

framework. Class JaamSimProblem extends the jMetal class Problem and defines the 

underlying SO problem. 

 package jmetal.experiments.settings: this jMetal package contains classes for setting the 

parameters of the optimisation algorithms. The functionality of supporting mixed integer-

real decision variables in algorithms which supported only the type “Real” was added. 

 package jmetal.operators: jMetal package containing classes that define mutation and 

crossover operators for the available optimisation algorithms. The classes pertaining to 

crossover operators SBXCrossover, DifferentialEvolutionCrossover, BLXAlphaCrossover 

and the mutation operators NonUniformMutation, PolynomialMutation, UniformMutation 

(refer to [18] for further details) where modified in order to support mixed integer-real 

decision variables. 

 package jmetal.util.wrapper: this jMetal package contains class Xreal, a wrapper for 

accessing real-coded solutions which was modified in order to handle mixed integer-real 

solutions. 

4. APPLICATION OF JSOPTIMIZER 

In this section, we discuss an application of the JSOptimizer software to a multi-objective 

optimisation problem that pertains to a Just-In-Time (JIT) production/inventory system. The 

investigated system consists of a number of production stages in series and manufactures a 

single part type. 

      Raw materials enter the first production stage and are processed in all stages sequentially 

to be converted to end-items which are stored in the finished goods buffer. Raw materials are 

perpetually available and so the first stage never starves. Customers arrive dynamically at 

random time intervals and each customer requests one item from the finished goods buffer. If 

there is available inventory at that time, the demand is satisfied instantaneously, otherwise it 

is placed in the backorders queue. Each production stage consists of a number of identical and 
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parallel workstations. A workstation consists of a single machine that processes parts one at a 

time and an input queue. A part that enters stage i is processed at the workstation with the 

minimum workload at that time (sum of queueing parts plus the currently processed part); ties 

are broken arbitrarily. The service times of the machines are subjected to random fluctuations. 

Production stages are separated by buffers. 

      At the time that some machine of stage i finishes a part, this part is stored in the 

corresponding buffer until it is authorized by the production control policy to move to the 

downstream stage for processing. The discipline of all queues in the system is First-Come-

First-Served. The system operates under some pull type production control policy, i.e. a 

control mechanism that coordinates production activities based on actual demand realizations. 

In this research, the Kanban, Extended Kanban and Base Stock control policies, are 

investigated. Each of these control policies is characterized by a number of parameters and it 

is described in section 4.1. 

4.1  Description of production control policies 

The dynamics of the alternative production control policies are represented by the respective 

queueing network models with synchronization stations [5]. The queueing network models of 

Figs. 4-6 pertain to production systems with four stages in series and three parallel 

workstations in each stage. Nonetheless, the properties of the respective control policies 

described here can be straightforwardly extended to systems with any number of production 

stages and workstations. In Figs. 4-6, P0 is the raw parts buffer and Pi, i = 1, 2, …, is the output 

buffer of stage i. The raw parts buffer is always non-empty by definition. D is the backorders 

queue, Mi,j is the j
th

 machine of stage i and Ii,j is the corresponding input queue. 

 

Figure 4: Queueing network model of a Kanban system with four stages in series and three 

parallel workstations in each stage. 

      Fig. 4 shows a Kanban system. According to this control policy, stage i is given the 

authorization to start working on a new part as soon as a stage i finished part exits the 

associated output buffer. In Fig. 5, queues Ai contain production authorizations (kanban 

cards) for stage i parts. Initially, all machines are idle and all queues are empty except the raw 

parts queue and buffers Pi, for all i. Buffer Pi initially contains Ki parts. The non-zero integers 

Ki correspond to the number of stage i production authorizations, or equivalently, the 

maximum number of parts allowed in stage i, and constitute the control parameters of the 

Kanban control policy. The reader is referred to [5, 19] for additional details on this control 

mechanism. 

      Fig. 5 illustrates a Base Stock system. Di is a queue that contains demands for new stage-i 

parts. At time 0, all machines are idling and all queues are empty with the exception of queues 

P0 (by definition) and Pi, for all i. Initially, each Pi queue holds Si parts, where Si is the base 

stock of stage i. The non-negative integer parameters Si fully characterize a Base Stock 
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control policy. This control mechanism operates as follows: at the time when a new customer 

order arrives at the system, the production of a new stage-i part is authorized, for all i. This 

way, the system responds rapidly to incoming demand. Nevertheless, there are no upper 

bounds on the Work-In-Process and finished goods inventories, and this might lead to 

excessive stock levels, especially if there is one or more bottleneck stages in the system. 

 

Figure 5: Queueing network model of a Base Stock system with four stages in series and three parallel 

workstations in each stage. 

 

Figure 6: Queueing network model of an Extended Kanban system with four stages in series and three 

parallel workstations in each stage. 

      Fig. 6 shows an Extended Kanban system. Queue Ai and Di contains production 

authorizations and demands for new stage-i parts, respectively. Furthermore, queue DAi 

contains pairs of production authorizations coupled with demands for new stage-i items. At 

time 0, all machines are idling, and all queues are empty expect P0, Pi, and Ai, i = 1, 2, … 

Initially, output buffer Pi contains Si items and queue Ai contains Ki production authorizations. 

It is reiterated that P0 is non-empty at all times. The non-zero integers Si and Ki, i = 1, 2, …, 

are the control parameters of the Extended Kanban policy. 

      According to this control policy, the information of a new demand arrival is 

instantaneously transmitted to all stages, i.e. to queues Di, i = 1, 2, … Stage i is given the 

authorization to start processing a new part at the time when there is at least one item in each 

of the Ai and Di queues. At that time point, a production authorization is removed from queue 

Ai and a demand for a stage-i part is removed from queue Di. These two items are coupled and 

the authorization/demand pair is sent to queue DAi to allow the production of a new stage-i 

part. Provided that there is available inventory in output buffer Pi-1, stage i starts the 
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production of a new part and a production authorization is forwarded to queue Ai-1. The reader 

is referred to [5] for additional details on this control scheme. 

4.2  Optimisation problem 

We address the following SO problem that is related to the production/inventory system 

studied in this research: 

 ),,(min yxfE  (1) 

s.t.   ugΕ ),,( yx  (2) 

ul xxx  , ul yyy   (3) 

nn  yx ,
 

(4) 

where E[f(x,y,ω)] is the expected value of the vector function f = (B,I,-U). B denotes the mean 

length of the backorders queue, I is the mean finished goods inventory, and U symbolizes the 

average utilization of the machines. x = (x1, x2, …) denotes the parameter vector of the control 

policy under which the production/inventory system operates. For example, in a Kanban 

system x contains the number of production authorizations in each stage. y = (y1, y2, …, yn), 

where n is the number of production stages, is a vector whose elements correspond to the 

number of identical/parallel machines in each stage. The vectors x and y are the decision 

variables of this optimisation problem. ω is a realization of random variables and denotes the 

stochastic nature of the simulation. E[g(x,y,ω)] is the expected value of function g = Bmax, i.e. 

the maximum length of the backorders queue, and u is a positive real constant. Function g is 

also evaluated via simulation and thus, the use of parameter ω. Finally, inequalities (3) define 

the bound constraints on the decision variables. 

      Minimizing the mean length of backorders is associated to maintaining a high customer 

service level, whereas excessive finished goods inventories are considered as waste of 

resources according to the JIT manufacturing paradigm. Maximizing average machine 

utilization is desirable as this metric quantifies the fraction of time that the machines are 

actually put to their intended use. Note that the aforementioned objectives are conflicting. 

Constraint (2) ensures that solutions where the production system cannot satisfy the demand 

(and the backorders queue increases indefinitely), will not be considered. 

      The performance of the Kanban, Base Stock, and Extended Kanban policies largely 

depends on the respective parameter values. By solving the optimisation problem defined in 

Eqs. (1) to (4) for the three alternative pull type mechanisms, the best control policies as well 

as the best configurations in terms of the number of parallel machines in each stage can be 

obtained. 

4.3  Metrics for comparing non-dominated sets 

A solution and the optimal solution to a multi-objective optimisation problem are called local 

and global Pareto or non-dominated set, respectively. The task of comparing alternative 

candidate solutions in a multi-objective setting consists of comparing alternative sets. For the 

purposes of this study we make use of four, prominent Pareto set – related performance 

metrics, which are described in this sub-section. In the following, |.| is the size of set operator, 

S denotes some local Pareto set, and S
*
 symbolizes the global Pareto set. 

      The hypervolume metric H measures the size of the objective space that is dominated by 

the elements of a non-dominated set S: 
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 iS

i vvolumeH 1  (5) 

where vi is the hypercube with diagonal corners, the objective vector of the i
th

 element in S, 

and the anti – optimal objective vector [6]. The generational distance metric GD evaluates the 

“distance” between a local Pareto set S and S
*
: 
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i id
S
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where id  is the Euclidean distance between the i
th

 element of S and the nearest element of S
*
. 

The inverted generational distance metric IGD is calculated as follows: 
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where si
*
 and sj is the i

th
 and j

th
 element of set S

*
 and S, respectively. Furthermore, d(si

*
, sj) is 

the Euclidean distance between vectors si
*
 and sj. The epsilon metric Iε equals the minimum 

factor ε by which each element of a local Pareto set S can be multiplied so that the resulting 

set is weakly dominated by S
*
: 

 ssss
**




 :inf *SSI 


 (8) 

where  is used to denote the ε-dominance relation between two vectors sa and sb in objective 

space for a minimization problem with k objective functions that assume positive values  

(sa  sb  ∀i  1, 2, …, k : sa,i   . sb,i). 

      GD and Iε are convergence metrics, i.e. they quantify the proximity of a local Pareto set to 

S
*
. On the other hand, HV and IGD are convergence-diversity metrics [20, 21], i.e. they 

jointly measure a) the convergence of a local Pareto set to the global and b) the 

distribution/diversity of a local Pareto set’s elements. 

4.4  Numerical results 

The proposed software was used to solve 2 (simulation cases) × 3 (production control 

policies) = 6 indicative instances of the problem defined in section 4.2. All problem instances 

involve a production/inventory system with exponentially distributed service and inter-arrival 

times. The first simulation case corresponds to a moderate workload scenario (mean inter-

arrival time = 1.0) whereas the second simulation case corresponds to a relatively heavy 

workload scenario (mean inter-arrival time = 0.5). All other parameters are kept fixed across 

the eight problem instances and they are summarized in Table I. Note that in the relevant 

literature it is common to study systems that consist of 3-5 stages [5-19]. Since the 

investigated production system is balanced, the ranking of the examined control policies is 

not expected to vary significantly if more than four production stages are considered. 

Additional simulation cases were not examined due to space limitations. All simulation 

models were implemented in JaamSim using the standard functionalities of the software. 

      Note that in the mathematical definition of the optimisation problem at hand (section 4.2) 

parameters yi are positive integers. However, in all simulation models used for the purposes of 

this study, the number of machines in each stage is determined implicitly by the 

NextComponent attribute of certain simulation objects, i.e. the analogous decision variables 

are defined as of type “JaamSim simulation object” in JSOptimizer. By setting these attributes 

as decision variables, alternative routings of the processed parts in the manufacturing system 

can be defined, and thus, the number of machines in each stage is set. This is an example of 
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how the JSOptimizer’s feature of supporting decision variables of type “JaamSim simulation 

object” can be used in practice. 

Table I: Parameters of simulation experiments. 

Number of production stages n 4 

Mean service time of machine Mi,j 1.0, ∀i, j 

Search space for decision variables xi {1, 2, …, 20}, ∀i 

Search space for decision variables yi {1, 2, 3}, ∀i 

Parameter u of constraint (2) 30.0 

Independent replications of each simulation model 20 

Duration of each independent replication 10000.0 

Warm-up period of each independent replication 500 

      From the set of available optimisation algorithms provided by JSOptimizer, the SPEA2 

[13] procedure was selected arbitrarily to solve the problem instances defined in this section. 

The parameters of the optimisation method were set to the values shown in Table II. The 

resulting solutions, i.e. local Pareto sets associated to the alternative production control 

policies, for simulation cases 1 and 2 are depicted in Fig. 7. The quality of the local Pareto 

sets shown in Fig. 7 can be assessed by the relevant functionalities provided by JSOptimizer 

and for the purposes of this research we make use of the four metrics discussed in section 4.3. 

Table II: Parameters of optimisation method. 

Population size 100 

Archive size 100 

Maximum evaluations 20000 

Crossover probability 0.9 

Mutation probability 0.1 

Mutation distribution index 20 

Crossover distribution index 20 

      Table III summarizes the Pareto set-related performance metrics for all control policies 

and simulation cases. Note that for the calculation of the GD, IGD, and Iε metrics, the global 

Pareto set is required; however this information is not available for the underlying 

optimisation problem. This is because of the problem’s singularity that stems from the fact 

that both the control parameters of pull-type production control policies and the capacity of 

each stage is optimised simultaneously. Consequently, published benchmark data are not 

available. An approximation of the global Pareto set is used instead, which is constructed by 

combining the overall non-dominated solutions associated to the three alternative control 

policies for each simulation case. In general, for a non-dominated set to be considered to be of 

good quality, it must yield relatively high H and low GD, IGD, Iε. 

      However, these metrics compare different characteristics of non-dominated sets and often 

produce contradicting results [21]. In respect to the hypervolume metric H, the Base Stock 

control policy is found to be the best in both simulation cases. In terms of the epsilon metric, 

the best policies are Extended Kanban and Base Stock for simulation cases 1 and 2, 

respectively. The Pareto sets associated to Base Stock and Extended Kanban yield the lowest 

GD values in simulation cases 1 and 2, respectively. Regarding the IGD metric, the Base 

Stock and the Kanban control mechanisms are tied in the first position, in simulation case 1. 

Finally, the Kanban policy ranks first in respect to the IGD metric in simulation case 2. In this 

experimental trial, it can be argued that the Base Stock policy exhibits the most favourable 
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performance in general. This can be attributed to the fact that it ranks first and second in 

respect to all metrics and simulation cases with the exception of the GD criterion in case 2. 

  

  

  

Figure 7: The local Pareto sets for simulation cases 1 and 2; U is the average machine utilization, I is 

the mean finished goods inventory, and B is the mean length of backorders queue. 
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Table III: Metrics of alternative Pareto sets. 

Simulation case 1 (mean time between arrivals = 1.0) 

 Iε H GD IGD 
Base Stock 0.07 0.98 0.006 0.002 

Extended Kanban 0.06 0.95 0.009 0.003 

Kanban 0.64 0.97 0.035 0.002 

Simulation case 2 (mean time between arrivals = 0.5) 
Base Stock 0.19 0.96 0.203 0.009 

Extended Kanban 0.23 0.89 0.095 0.009 

Kanban 0.70 0.83 0.103 0.0009 

5. CONCLUSION AND DIRECTIONS FOR FUTURE RESEARCH 

We developed and presented JSOptimizer, an open-source and fully customizable tool for 

optimizing DES models built with JaamSim. JSOptimizer allows for increased flexibility in 

defining and solving complex SO problems. This was demonstrated by examining a 

challenging, multi-objective optimisation problem. The specific problem is merely indicative 

of JSOptimizer’s capabilities. Given the wide range of DES applications and the established 

community of JaamSim, the proposed tool has significant potential to find numerous practical 

applications. Any multi-objective, constrained/unconstrained SO problem with binary/integer/ 

/real/mixed decision variables can be attacked with the use of JSOptimizer. For example, in 

the industrial engineering field, the plausible applications of JSOptimizer include buffer 

allocation, production control, capacity planning, and job scheduling/routing problems, 

among others. 

      Directions for future research are provided hereafter. A multithreaded implementation of 

JSOptimizer can be considered as well as adding the parallel multi-objective algorithms of the 

jMetal framework to the list of supported optimisation methods. Rendering the .jsopt files 

human readable would allow the user to quickly edit existing SO problem configurations in 

order to speed-up lengthy experimental trials. Another possible direction is the incorporation 

of open-source statistical modules in JaamSim for simulation output analysis. 
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