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Abstract 

In this paper, we develop a smoothing algorithm that allows a subsequent production of components 

directly after topology optimisation. This is achieved by keeping features that are important for 

production, such as flat surfaces or straight edges. 

      The algorithm works in two steps. The first step is based on the marching cubes algorithm and is 

necessary to prepare the optimisation result for the second step. The optimisation result consists of a 

density distribution and needs to be transformed to a surface representation without further material or 

density information. The second step makes use of an implicit method for smoothing surfaces, the so-

called implicit fairing. 

      The proposed two-step algorithm is exemplarily shown on two models. The results are compared 

to those received from a commercial solution to evaluate the quality of the algorithm. We show that 

the proposed algorithm allows a subsequent production directly after the optimisation and leads to 

results that are similarly good compared to those obtained by the commercial solution. 
(Received in December 2017, accepted in April 2018. This paper was with the authors 2 weeks for 1 revision.) 
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1. INTRODUCTION 

Today, optimisation is widely spread and used in various scientific disciplines. Different 

optimisation methods are designed for specific optimisation problems, such as 

multidisciplinary optimisation or constrained mono-objective optimisation. These methods 

can be used in a variety of use cases, e.g. the layout optimisation of production cells in 

businesses or the optimisation of inventory routing to reduce emissions. [1, 2] Besides these 

use cases, optimisation also is used in mechanical engineering, specifically in the form of 

topology optimisation [3-6]. 

      Lightweight construction is gaining in importance and is increasingly playing an 

important role in the modern development of new products. Great material savings and 

associated weight reduction lead to a more efficient use of resources, resulting in better 

environmental performance and lower operating costs. Topology optimisation is an ideal tool 

for developing lightweight structures for various applications. The problem with this method 

is, however, that the topology-optimised structures are very rugged due to the discretisation 

with finite elements. Therefore, these structures cannot be manufactured and make manual 

reworking necessary. 

      In order to avoid this reworking and to realize a direct production from the virtual model, 

a smoothing of the optimisation results is necessary. This leads to a high degree of automation 

of the process of optimisation and subsequent production. Smoothing especially is used in 

computer graphics for creating three-dimensional geometric models from data obtained by 

scanning, e.g. for computer games or medical applications [7-9]. 

      Currently used algorithms for smoothing are, for example, the explicit Euler method [10, 

11] or the λ/μ method [10, 11]. The problem with the explicit Euler method is that in large 

structures very small time steps have to be chosen in order to obtain an acceptable result. This 

quickly increases the calculation time [11, 12]. Although the λ/μ method prevents shrinkage 
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phenomena which frequently occur in various smoothing algorithms [11, 13, 14], the 

parameters λ and μ must be elaborately determined and defined by the user [11]. 

      In addition, the smoothing changes the surface and geometry and thereby some features 

proposed by the optimisation (e.g. straight edges) may be lost [3, 10, 12, 15, 16]. As a result, a 

direct production after optimisation is not possible because under certain circumstances, 

smoothing could remove production-relevant features. 

      The proposed two-step smoothing algorithm avoids shrinkage phenomena and is easy to 

adjust. It still works in an acceptable time with large structures and keeps production-relevant 

features of the optimised structure. 

2. DESCRIPTION OF THE ALGORITHM 

The basis for smoothing is an optimised component. It is usually obtained as a result from 

topology optimisation and is available as a finite element mesh with a density distribution. 

That is, each element j has a value dj between 0 and 1 (relative density) that indicates whether 

the element is included in the optimised result or not. An element with a relative density of 1 

is included; an element with a relative density of 0 represents a hole and is not included. For 

elements with a relative density between 0 and 1, it must be decided whether they are 

included or not. The present work considers hexahedral meshes (see Fig. 1). One of the two 

steps of the proposed two-step algorithm will be specifically directed to this type of mesh. If 

this step is slightly modified, the proposed procedure can also be used for tetrahedral 

elements. 
 

 

Figure 1: Exemplary density distribution of hexahedral elements. 

      For the first step of the two-step smoothing algorithm, the density values from the 

optimisation at the individual nodes are needed. In order to obtain these, for each node i the 

density values of the elements E(i) containing the node are computed. For this purpose, for 

each relevant element, the vectors starting from the considered node to the directly adjacent 

nodes are formed (see Fig. 2). 
 

 

Figure 2: Vectors from the considered node to the neighbouring nodes. 

      Based on these vectors, the solid angle Ωi,j, which the element j occupies around the node 

i, is calculated according to Eq. (1) [17]: 



Deese, Geilen, Rieg: A Two-Step Smoothing Algorithm for an Automated Product … 

310 

tan (
1

2
Ω𝑖,𝑗) =

〈𝑥⃑1 𝑖,𝑗 , 𝑥⃑2 𝑖,𝑗, 𝑥⃑3 𝑖,𝑗〉

𝑥1𝑥2𝑥3 + (𝑥⃑1 𝑖,𝑗 ∙ 𝑥⃑2 𝑖,𝑗)𝑥3 + (𝑥⃑1 𝑖,𝑗 ∙ 𝑥⃑3 𝑖,𝑗)𝑥2 + (𝑥⃑2 𝑖,𝑗 ∙ 𝑥⃑3 𝑖,𝑗)𝑥1

 

 

with 𝑥𝑛 = |𝑥⃑𝑛 𝑖,𝑗|. 

(1) 

      The solid angle is multiplied by the relative density dj of the considered element. This 

product is normalised with the sum of all solid angles of the relevant elements formed in the 

same way. To get the relative node density, this process is repeated and summed for each 

relevant element (see Eq. (2)). 

𝜌𝑖 =
1

∑ Ω𝑖,𝑘𝑘∈𝐸(𝑖)
∑ 𝑑𝑗Ω𝑖,𝑗

𝑗∈𝐸(𝑖)

 (2) 

      After the preparation of the model, the actual first step of smoothing is performed. This 

consists of a slight modification of the so-called marching cubes algorithm [18]. The node 

densities are used to determine which node should be part of the optimised structure and 

which should be omitted. For this a predetermined limit is used. Any node with a density 

below the boundary is removed by the marching cubes algorithm by placing triangles in the 

appropriate place through the hexahedron (see Fig. 3). 
 

 

Figure 3: Classic marching cubes (grey dotted) and modified marching cubes (grey dashed). 

      The first step of the smoothing algorithm is to generate a component with a clearly 

defined surface from the density distribution within the design volume. The output of the first 

step is no longer an FE mesh of hexahedrons, but the surface of the part as STL. 

      The second step is the so-called "implicit fairing" according to Desbrun [10]. This 

approach is based on Laplace smoothing and is solved with implicit integration, which makes 

the time steps for the solution much larger compared to the explicit Euler method. The 

underlying equation is as follows [10, 19]: 

(𝐼 − 𝜆𝑑𝑡𝐿)𝑋𝑛+1 = 𝑋𝑛 (3) 

      Here, X is the mesh (surface) that contains the nodes xi. λdt is the time step given by the 

user, n is the current iteration, and L is the umbrella operator, which is calculated as follows 

[12, 20]: 

𝐿(𝑥𝑖) =
1

|𝑁1(𝑖)|
∑ 𝑥𝑗 − 𝑥𝑖

𝑗∈𝑁1(𝑖)

 (4) 

      N1(i) is the set of neighbours of node xi, i.e. the nodes directly connected to xi in the finite 

element mesh. 

      If the mesh is too coarse, smoothing removes any relevant features. To counter this, the 

surface is refined after a defined number of steps. Fig. 4 shows the procedure exemplary in 

the two-dimensional case. 
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      After successful smoothing, the part is exported as STL. 
 

 

Figure 4: Refinement to preserve geometric features in the 2D case. 

3. MODELS 

The two-step smoothing algorithm is demonstrated on two models in order to assess its 

functionality. Input for the smoothing algorithm is the mesh with the corresponding density 

distribution of the optimisation results. For this study a proprietary format converted from the 

results is used. Fig. 5 shows the first model. 
 

 

Figure 5: Model 1 – Beam model with pressure load (left) and the optimisation result (right). 

      The model is a beam of dimension 1002020 mm, which is fixed in one end and loaded 

with pressure at the other end in the middle of each side surface on an area of size 66 mm 

(Fig. 5, left). It consists of 6171 hexahedron elements. Optimisation was performed with 

Tosca [21] using the SIMP method [5, 6]. The result is shown on the right. Elements with a 

relative density below 0.25 are not displayed, which are 1823 of the original elements. 
 

 

Figure 6: Model 2 – Loaded beam model (left) and the optimisation result (right). 
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      The second model (see Fig. 6, left) is a beam of dimension 1002040 mm. The fixture 

was applied to one end face as in the first model, while a force was applied to the opposite 

upper edge on a width of 6. This model consists of 3094 hexahedron elements. The 

optimisation again was carried out with Tosca using the SIMP method (Fig. 6, right). Not 

displayed are elements with a relative density below 0.15, which are 1919 of the original 

elements. 

4. METHOD 

In order to evaluate the two-step algorithm, the smoothing results are compared to the results 

of the smoothing step available in Tosca. 

      The actual target is to achieve a result that keeps relevant features and therefore resembles 

the topology optimisation result. Assuming that elements of the optimised result with a 

relative density d should also be included in the smoothed result for this proportion, a 

statement can be made as to how well the smoothed result maps the optimised component. 

For this purpose, the smoothing result is superimposed on the optimised component and 

divided into four areas: 

 volume to be included after optimisation and included after smoothing (inside / inside), 

 volume to be included but is not included (inside / outside), 

 volume that should not be included and is not included (outside / outside), 

 volume that should not be included but is included (outside / inside). 

      Ideally, the "inside / outside" and "outside / inside" parts tend towards zero. Smoothing 

would not remove any needed volume nor add unnecessary volume. 

      This method gives a good first understanding of how well the algorithm works. 

Nevertheless, if two different smoothed results are compared this way, they can still both 

show similar good numbers. The reason for the differences in the smoothed results, although 

the volume mapping is virtually identical, is that the comparison of the optimised and the 

smoothed structure is based solely on the relative density of the element and the volume of the 

smoothed component in the region of the element. In which way the volume is arranged is not 

considered in the comparison. Fig. 7 illustrates this situation. 
 

 

Figure 7: Two possible volume representations of an element with a given relative density. 

      Here, both elements have a density of 0.5, i.e. they should only be filled halfway in the 

smoothed result. The grey part resembles the actual way of how the volume may be 

distributed. 

      For a second way of evaluation, the smoothing results are simply compared optically to 

the optimisation results and the smoothing results of Tosca. The goal of this comparison is to 

see if the proposed algorithm can preserve optimisation features, such as flat surfaces or 

straight edges. 

      Besides these methods for comparing the result of the proposed two-step smoothing 

algorithm, additional comparisons are made regarding the computational effort, i.e. the total 

time the smoothing takes with the two-step algorithm and Tosca. For this, the smoothing is 

conducted ten times, of which the average time effort is calculated. 
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5. RESULTS 

Fig. 8 shows the respective proportions both after smoothing with Tosca and with the two-

step smoothing algorithm. Both smoothing algorithms lead to similar good results and almost 

eliminate the “inside / outside” and “outside / inside” parts. 

 
Figure 8: Volume image of the optimised result by smoothing on model 1. 

      The optical results of smoothing model 1 with the two-step algorithm are shown in Fig. 9. 

The intermediate result after the first step (modified marching cubes) can be seen on the left 

side. The final result is shown on the right. For comparison, the smoothing result from Tosca 

is shown in Fig. 10. The results clearly differ and resemble the topology optimisation result in 

different ways. The two-step algorithm tends to create straight edges and flat surfaces and 

strictly keep optimised features. 

 

Figure 9: Model 1 smoothed with two-step algorithm, first step (left) and second step (right). 

      One specific detail besides the flat surfaces is the small pocket on the front. Fig. 11 shows 

this pocket after smoothing with the two compared algorithms. With the two-step algorithm, 

the pocket is clearly visible and consists of flat surfaces. The result from Tosca does not show 

this pocket. 
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Figure 10: Model 1 smoothed with Tosca. 

 

Figure 11: Front pocket in model 1 after smoothing with two-step algorithm (left) and Tosca (right). 

      The results of model 2 are shown below. As with model 1, both smoothing algorithms 

almost eliminate the undesired volume parts and show similar results. 

 
Figure 12: Volume image of the optimised result by smoothing on model 2. 

      Figs. 13 and 14 show the optical comparison of the smoothing results of the two-step 

algorithm and Tosca. Both results generally go into the same direction but still look different. 

As with the previous model, the two-step algorithm leads to flat surfaces and straight edges. 
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Figure 13: Model 2 smoothed with two-step algorithm, first step (left) and second step (right). 

 

Figure 14: Model 2 smoothed with Tosca. 

      Fig. 15 shows the rear part of model 2. Smoothing with Tosca leads to larger holes and to 

holes, where the two-step algorithm did not introduce holes. Additionally, the two-step 

algorithm leads to flat surfaces and does not create a bloated structure. 

 

Figure 15: Rear part of model 2 after smoothing with two-step algorithm (left) and Tosca (right). 

      Regarding the time consumption of the two-step smoothing algorithm and Tosca, Fig. 16 

shows that the two-step algorithm is slower. 

 
Figure 16: Average time consumption for smoothing. 
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      For the first model, Tosca takes an average of 3.2 seconds while the two-step algorithm 

takes an average of 6.2 seconds. For the second model, due to the reduced number of 

elements, both algorithms are faster. Tosca takes an average of 2.7 seconds while the two-step 

algorithm takes an average of 4.8 seconds. It has to be mentioned that for Tosca the default 

settings of five iterations was used. For the two-step algorithm a setting of ten iterations for 

the second step was used. 

6. CONCLUSION 

The illustrated two-step smoothing algorithm is an implicit method. This means that a linear 

system of equations must be solved for each iteration. What initially appears to be a 

disadvantage has a positive effect on large systems compared to an explicit method, since a 

large time step can be chosen. On the other hand, if the method is explicit, the time step must 

be small, which increases the calculation time [10]. 

      The presented algorithm is easy to handle since only two parameters are needed for the 

configuration: the size of the time step λdt (see Eq. (3)) and the number of iterations to be 

performed. In addition, the choice of parameters is not very complicated because the 

algorithm is robust to changes in the parameters. 

      As can be seen in the results, features of the optimised component are well preserved. In 

particular, straight edges and flat surfaces are well represented and thus require little or no 

rework. This is especially good compared to the results of smoothing with Tosca. If the 

optimisation has been carried out in compliance with production restrictions, the resulting 

features are retained, whereby the smoothed result is also suitable for production. The 

duration of the smoothing with the proposed two-step algorithm is higher than with Tosca but 

still short. In comparison to the overall time needed for topology optimisation, the smoothing 

plays only a little role. 

      The illustrated two-step smoothing algorithm thus represents a possibility to make 

optimised results easier to interpret for the human eye and, moreover, to pass them directly to 

the production. This closes the gap between optimisation and production and enables a fully 

automated product development process. 
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