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Abstract 

The traditional swarm intelligence algorithms are inefficient and difficult to converge to the optimal 

solution of the job-shop scheduling problem (JSP). In this paper, an improved whale optimization 

algorithm (IWOA) is proposed based on quantum computing to solve the discrete JSP. The algorithm 

was subjected to the analysis on computing complexity, the demonstration of global convergence, and 

simulation verification on a benchmark example of the JSP. Through the simulation, our algorithm 

achieved better minimum value, mean value and optimization success rate than traditional swarm 

intelligence algorithms. The results prove the convergence accuracy and global search ability of the 

IWOA. 
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1. INTRODUCTION 

Job-shop scheduling problem (JSP) [1-3] is the most classical scheduling problem for discrete 

manufacturing systems. As one of the most difficult combinatorial optimization problems, the 

JSP has been proved to be non-deterministic polynomial-time (NP) hard. No algorithm can 

converge to the optimal solution of the problem in polynomial time. 

      The JSP attempts to optimize different performance indices through rational scheduling of 

jobs and processes under varied constraints. The problems can be classified by the research 

perspective: static JSP [4] and dynamic JSP [5] by processing features, open-shop scheduling 

problem (OSSP) [6] and flow-shop scheduling problem (FSP) [7] by the composition of job 

and job-shop, single-machine scheduling problem [8] and parallel machine scheduling 

problem [9] by scheduling parallelism. The algorithms to solve these scheduling problems 

have become a research hotspot in the field of the JSP. 

      Swarm intelligence [10, 11], a new evolutionary computing technology, maintains a 

special relationship with evolutionary strategy and genetic algorithm (GA). Two important 

algorithms have been inspired by swarm intelligence theory: ant colony optimization (ACO) 

[12, 13] and particle swarm optimization (PSO) [14, 15]. Drawing on the foraging behaviour 

of ants, the ACO has been successfully applied to many discrete optimization problems. The 

PSO, mimicking simple social systems, was originally used to simulate the food search 

process of birds, but was later found to be a good optimization tool. 

      This paper proposes an improved meta-heuristics swarm intelligence algorithm based on 

quantum computing to solve discrete JSP. The algorithm was subjected to the analysis on 

computing complexity, the demonstration of global convergence, and simulation verification. 
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The results prove the superiority of our algorithm over other swarm intelligence algorithms in 

solving the JSP. 

2. LITERATURE REVIEW 

Being a branch of computational intelligence, swarm intelligence regards the foraging 

behaviour and communication mechanism of organisms as the optimization process to adapt 

to the environment. Below is a brief introduction to typical swarm intelligence algorithms. 

      The GA [16] is a stochastic adaptive search algorithm based on Darwin’s evolutionary 

theory and Mendelian genetics. The main operations of the algorithm include the genetic 

selection, crossover and mutation in the evolutionary process of similar species. The ACO [17] 

imitates how foraging ants search for the shortest path to the food source: the ants 

communicate with each other with pheromones, and complete the search based on positive 

feedbacks. The PSO [18] is a simple, fast-converging algorithm based on the predatory 

behaviour of bird swarm, but it is easy to fall into the local optimum trap and unstable in 

multi-modal optimization. The artificial fish-swarm algorithm (AFSA) [19] emulates the 

behaviours of fish swarm, namely, random behaviour, preying, swarming and following, and 

is controlled by the mobile strategy. The artificial bee colony (ABC) algorithm [20], inspired 

by bees’ honey-collection behaviour, is suitable for multi-modal and high-dimensional 

optimization, requiring a small population and a few parameters. The hybrid frog leaping 

algorithm (HFLA) [21] fuses frog foraging features into the PSO and memetic algorithm 

(MA). The HFLA needs a large population, and must reorder the individuals in each 

generation. Thus, the computing complexity of the algorithm increases with the number of 

iterations, making it ineffective in high-dimensional multi-modal optimization. The firefly 

algorithm (FA) [22] was developed in the light of firefly aggregation and luminescence. The 

FA bears high resemblances with the AFSA, and faces problems like long distance computing 

and single-step movement mode. 

      The whale optimization algorithm (WOA) [23] arises from the hunting behaviour of 

humpback whale. However, the WOA is easy to fall into the local optimum trap, as well as 

slow and inaccurate in convergence. Thus, the algorithm has been improved repeatedly to 

enhance the convergence speed and accuracy. For example, Aljarah et al. [24] presented an 

adaptive WOA based on the original WOA. Zhong and Long [25] proposed an efficient WOA 

with randomly adjustable control parameters. Liu and Li [26] developed a sine-cosine chaotic 

two-chord WOA. These improved WOAs have been applied to continuous optimization 

problems, rather than discrete JSP. 

      The ABC algorithm boasts fast speed and high efficiency in solving the JSP. Li and Ma 

[27] created a Pareto-based hybrid ABC algorithm for the JSP. Thammano and Phu-ang [28] 

designed a hybrid ABC algorithm with local search to solve the JSP. Banharnsakun et al. [29] 

put forward an ABC algorithm based on the best-so-far principle for the JSP. Wang et al. [30] 

generated the initial solution using several strategies and used Pareto to store and record the 

non-dominant solution. 

3. PRELIMINARIES 

3.1  Mathematical description of the JSP 

The JSP is generally described as the optimization of certain performance indices through 

rational arrangement of the processing sequence of n jobs on m machines, under the given 

processing technique, machine sequence and processing time of each job. The JSP must 

satisfy the following hypotheses: 

      Hypothesis 1: The machine never breaks down, and the job is processed from zero time. 
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      Hypothesis 2: Each machine can only process one job at a time, and each job cannot be 

processed on more than one machine at the same time. 

      Hypothesis 3: The operations of a job must be completed within the processing time. 

Once started, the operation sequence cannot be interrupted. Pre-emptive processing is not 

allowed between the operations. 

      Hypothesis 4: Each job has a fixed operation sequence, i.e., each machine is responsible 

for a specific operation of the job, and each operation takes a fixed amount of time. There is 

no constraint on the sequence between different jobs. 

      Mathematically, the JSP can be described by linear programming model, integer 

programming model and disjunctive graph model. In this paper, the JSP is described by 

integer programming model as: 

min max1≤𝑗≤𝑚
1≤i≤𝑛

{𝑐𝑖𝑗}          (1) 

      s.t. 

𝑐𝑖𝑗 − 𝑡𝑖𝑗 + 𝑀(1 − 𝑎𝑖ℎ𝑗) ≥ 𝑐𝑖ℎ    (2) 

𝑐𝑘𝑗 − 𝑐𝑖𝑗 + 𝑀(1 − 𝑥𝑖𝑘𝑗) ≥ 𝑡𝑘𝑗    (3) 

𝑐𝑖𝑗 ≥ 0            (4) 

𝑎𝑖ℎ𝑗 , 𝑥𝑖𝑘𝑗 = 0, 1      (5) 

𝑖, 𝑘 = 1, 2, … , 𝑛      (6) 

𝑗, ℎ = 1, 2, … , 𝑚      (7) 

where, 𝑡𝑘𝑗 and 𝑐𝑖ℎ are the processing time and makespan of job i on machine k, respectively; 

𝑎𝑖ℎ𝑗 = 1 means machine h precedes machine j in processing job i; 𝑎𝑖ℎ𝑗 = 0 means machine j 

precedes machine h in processing job i; 𝑥𝑖𝑘𝑗 = 1 means job i is processed on machine j prior 

to job k; 𝑥𝑖𝑘𝑗 = 0 means job i is processed on machine k prior to job j. 

      Eq. (1) specifies the objective of the JSP: minimizing the maximum makespan. Eqs. (2) 

and (3) are the constraints of the problem, namely, the operation sequence and the non-

blocking requirement on the operations. 

3.2  The WOA 

The WOA includes three operators to simulate the search for prey, encircling prey, and 

bubble-net foraging behaviour of humpback whales. During bubble-net foraging, each whale 

chooses between spiral updating and shrinking encircling based on the value of random 

probability. The spiral updating can be modelled as: 

𝑌(𝑡 + 1) = 𝐷′ ∙ 𝑒𝑎𝑙 ∙ 𝑐𝑜𝑠(2𝜋𝑙) + 𝑌∗(𝑡)          (8) 

𝐷′ = |𝑌∗(𝑡) − 𝑌(𝑡)|          (9) 

where, t is the current number of iterations; vector 𝑌(𝑡) and vector 𝑌(𝑡 + 1) are the current 

position and the iteratively updated position of an individual whale, respectively; vector 𝑌∗(𝑡) 

is best foraging position among the whales; 𝑎 is a constant about the shape of logarithmic 

helix; 𝑙 is a random number within [-1, 1]. Together, 𝑎 and 𝑙 control the spiral updating of the 

whales. If 𝑙 = −1, then the whales are the closest to the prey; If 𝑙 = 1, then the whales are the 

farthest from the prey. 

      Let p be the probability of an individual whale to choose spiral updating. Then, the 

bubble-net foraging behaviour can be described as: 

𝑌(𝑡 + 1) = {
𝑋∗(𝑡) − 𝐴 ∙ 𝐷                              𝑝 < 𝑝∗

𝐷′ ∙ 𝑒𝑎𝑙 ∙ cos(2𝜋𝑙) + 𝑌∗(𝑡)     𝑝 ≥ 𝑝∗       (10) 
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      If 𝑝 < 𝑝∗, the individual whale updates its position and moves to a better position, to 

achieve shrinking encircling of the prey. 

      The shrinking encircling can be modelled as: 

𝐷 = |𝐶 ∙ 𝑌∗(𝑡) − 𝑌(𝑡)|         (11) 

𝑌(𝑡 + 1) = 𝑌∗(𝑡) − 𝐴 ∙ 𝐷           (12) 

𝐴 = 2α ∙ 𝑟1 − 𝛼     (13) 

𝐶 = 2𝑟2          (14) 

α = 2 −
2𝑡

𝑇𝑚𝑎𝑥
              (15) 

where, 𝑇𝑚𝑎𝑥 is the maximum number of iterations; α decreases linearly from 2 to 0 with the 

increase in the number of iterations; 𝑟1 and 𝑟2 are random vectors within [0, 1]; coefficient 

vectors 𝐶  and 𝐴 control the moving pattern of individual whale. If |𝐴|<1, then individual 

whale 𝑌(𝑡) is close to the current optimal position 𝑌∗(𝑡) of the population, and will move to 

that position; otherwise, the individual whale will start to search for prey. 

      The search for prey can be modelled as: 

𝑌(𝑡 + 1) = 𝑌𝑟𝑎𝑛𝑑 − 𝐴 ∙ 𝐷𝑟𝑎𝑛𝑑    (16) 

𝐷𝑟𝑎𝑛𝑑 = |𝐶 ∙ 𝑌𝑟𝑎𝑛𝑑 − 𝑌(𝑡)|             (17) 

where, 𝑌𝑟𝑎𝑛𝑑 is another random individual whale in the population. Eqs. (16) and (17) show 

that, if |𝐴| is not less than 1, the individual whale will move randomly towards another whale. 

4. IMPROVED WOA (IWOA) BASED ON QUANTUM COMPUTING 

4.1  Quantum computing and quantum optimization 

In quantum computing, the information is stored in basic units called quantum bits. Compared 

with classical bit, a quantum bit can be stored continuously in a random manner, allowing the 

two polarized states to superpose in any form. The quantum bits can be divided into single 

quantum bit, double quantum bit and multi-quantum bit. The superposition state of a single 

quantum bit can be expressed as: 

|φ| > α ⋋ +β ⋌     (18) 

|𝛼|2 + |𝛽|2 = 1     (19) 

where, ⋋ and ⋌ are the Dirac notations of the two basic states of microparticles in quantum 

computing, respectively; α  and β  are plurals representing the probability amplitude of 

quantum states. 

      The quantum methods that logically transform quantum states are called quantum logic 

gates, which are the basis of quantum computing. The main quantum gates include Hadamard 

gate, Pauli-X gate, Pauli-Y gate, Pauli-Z gate, phase gate, 𝜋 8⁄  gate and quantum rotation gate 

(QRG). 

      The QRG can be described as: 

𝑅(𝜃) = [
cos 𝜃      − sin 𝜃
sin 𝜃           cos 𝜃

]            (20) 

      The updating process of its quantum state can be depicted as: 

[
α′

β′] = 𝑅(𝜃) [
α
β]     (21) 

where, 𝜃 is the rotation angle. 

 



Zhu, Shao, Chen: An Improved Whale Optimization Algorithm for Job-Shop Scheduling … 

525 

4.2  The IWOA 

The basic WOA is poor in convergence accuracy and easy to fall into the local optimum trap. 

To overcome the defects, this algorithm was improved by the theory of quantum computing 

and quantum optimization. Specifically, the QRG operation was introduced and the position 

updating mechanism was modified, aiming to enhance population diversity and convergence 

accuracy. Let 𝑌(𝑡) and Q𝑌(𝑡) be the position of an individual whale in the search space and 

that after QRG operation, respectively. Since β = √1 − 𝛼2 (Eq. (19)), the updating process of 

QRG can be simplified as: 

𝛼′ = |𝛼 ∙ cos(𝜃) − √1 − 𝛼2 ∙ sin 𝜃|       (22) 

      The operation mode of QRG is called single-chain coded QRG operation. Under this 

operation, the position of the individual whale can be defined as: 

Q𝑌(𝑡) = |𝑌(𝑡) ∙ cos(𝜃) − √1 − 𝑌(𝑡)2 ∙ sin 𝜃|   (23) 

      After a whale has been updated by a QRG, the updated solution is compared with the pre-

update solution, and the better one should be selected. 

 

Figure 1: The workflow of the IWOA based on quantum computing. 
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      As shown in Fig. 1, the IWOA based on quantum computing can be implemented in the 

following steps: 

      Step 1: Set the maximum number of iterations, population size and parameters. 

      Step 2: Randomly initialize the population. 

      Step 3: Calculate the fitness of individual whales, and find the current global optimal 

solution. 

      Step 4: Update the position of individual whales in each dimension based on the values of 

𝑝 and |𝐴|. 
      Step 5: Perform the QRG operation for variables in each dimension of whale individuals. 

      Step 6: Evaluate the updating effects of Steps 4 and 5, and retain the better solution. 

      Step 7: Repeat Steps 3 to 6 until reaching the maximum number of iterations. 

      Step 8: Output the solution. 

4.3  Demonstration of algorithm convergence 

According to the criterion and theorem on global convergence, an algorithm capable of 

converging to the global optimal solution must satisfy the following two assumptions: 

      Assumption 1. If 𝑓(𝐷(𝑧, 𝜉)) ≤ 𝑓(𝑧) and 𝜉 ∈ 𝑆, then 𝑓(𝐷(𝑧, 𝜉)) ≤ 𝑓(𝜉), where 𝑓 is the 

objective function of the minimization problem, 𝐷 is an operator or function that guarantees a 

better and newest solution, 𝜉 is the vector generated by the algorithm in the sample space, and 

𝑧 is a point in subset S of the solution space that minimizes the function value or produces an 

acceptable lower bound of the function value on S. This assumption ensures that the 

optimization algorithm operates correctly, such that its solution sequence converges to the 

lower bound of function f on S. 

      Assumption 2. For any Borel subset A in S, if its probability measure 𝑉[𝐴] > 0, then 
∏ (1 − 𝜇𝑘[𝐴]) = 0∞

𝑘=0 , where 𝜇𝑘[𝐴] is a probability measure of 𝐴 generated by distribution 

𝜇𝑘. This assumption ensures that, if the measure is greater than 0, the algorithm will not miss 

any Borel subset A in solution space S after infinite iterations. 

      The global convergence of the IWOA can be proved based on the two assumptions. 

      Lemma 1. The IWOA satisfies Assumption 1. 

      Function D of the IWOA can be defined as: 

𝐷(𝐺𝑡 , 𝑌𝑖,𝑡) = {
𝐺𝑡                      𝑓 (𝑔(𝑌𝑖,𝑡)) ≥ 𝑓(𝐺𝑡)

𝑔(𝑌𝑖,𝑡)           𝑓 (𝑔(𝑌𝑖,𝑡)) < 𝑓(𝐺𝑡)
      (24) 

where, 𝐷 is a function that computes and selects of global optimal positions for the whale 

population; 𝑔 is a continuous function corresponding to the QRG operation function; 𝑔(𝑌𝑖,𝑡) 

is the position of individual whale i after the t
th

 iteration; 𝐺𝑡  is the current global optimal 

position. 

      The definition of our algorithm shows that the fitness corresponding to 𝐺𝑡 is monotonic 

and nonincreasing, and gradually converges to the lower bound of the solution space. Thus, 

Lemma 1 is proved. 

      Lemma 2. The IWOA satisfies Hypothesis 2. 

𝑔(𝑌𝑖,𝑗,𝑡) = |𝑌𝑖,𝑗,𝑡 × cos 𝜃 − √1 − 𝑌𝑖,𝑗,𝑡 × sin 𝜃|   (25) 

where, 𝑌𝑖,𝑗,𝑡 is the position of the j-dimensional variable of the i
th

 whale individual after the t
th

 

iteration; 𝑔(𝑌𝑖,𝑗,𝑡) and 𝑌𝑖,𝑗,𝑡 fall within [0, 1]. 

      The following equation can be derived from Eq. (25): 

𝜃 = cos−1 (±𝑔(𝑌𝑖,𝑗,𝑡)) − 𝜎            (26) 
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where, 𝜎  falls within [0, 𝜋 2⁄ ]; 𝑌𝑖,𝑗,𝑡  is a point in the j-dimension; 𝑔(𝑌𝑖,𝑗,𝑡)  is any point 

different from 𝑌𝑖,𝑗,𝑡  in the j
th

 dimension. Eq. (26) is valid when 𝜎 falls between −𝜋 2⁄  and 

3𝜋 2⁄ ). The probability for 𝑌𝑖,𝑗,𝑡 to reach 𝑔(𝑌𝑖,𝑗,𝑡) is greater than zero, if the quantum rotation 

angle falls within the range of 𝜃. 

      Let 𝜇𝑖,𝑡 be the uniform distribution of n-dimensional variables corresponding to individual 

whales. For any Borel subset A in S, if 𝑉[𝐴] > 0, then 

0 < 𝜇𝑖,𝑡[𝐴] < 1     (27) 

      Then, the probability measure of A generated by 𝜇𝑡 can be expressed as: 

𝜇𝑡[𝐴] = 1 − ∏ (1 − 𝜇𝑖,𝑡[𝐴])𝑆
𝑖=1     (28) 

      Eqs. (27) and (28) show that 

∏ (1 − 𝜇𝑡[𝐴]) = 0∞
𝑡=0         (29) 

      Thus, Lemma 2 is proved. 

      To sum up, the IWOA is a global convergence algorithm that satisfies both assumptions. 

5. SIMULATION AND RESULTS ANALYSIS 

To verify its performance, our algorithm was applied to solve the benchmark example of the 

JSP, and compared with other swarm intelligence algorithms like the grey wolf optimizer 

(GWO) and the cuckoo search (CS). 

      The parameters were set as follows: the number of jobs, n; the number of machines, m; the 

maximum number of iterations, 200. The results of the three algorithms on the benchmark 

example are compared in Table I below. Each sample consists of three rows, namely, the 

maximum makespan, the maximum machine load and the total machine load. Obviously, the 

IWOA outperformed the contrastive algorithms in all samples. 

Table I: Comparison between the results of the three algorithms on the benchmark example. 

Problem 

scale 

IWOA GWO CS 

Minimum value Mean value Minimum value Mean value Minimum value Mean value 

4×5 

11 12.7 13 14.2 12 14.8 

10 13.6 12 16.1 12 16.3 

32 33.7 35 37.2 36 38.7 

8×8 

12 15.8 13 17.3 13 17.6 

14 16.2 15 18.2 15 18.4 

77 79.4 80 82.7 79 83.7 

10×7 

13 16.1 13 17.5 14 17.9 

14 16.8 15 18.9 16 19.2 

83 85.7 84 87.6 83 88.1 

10×10 

14 16.7 14 17.7 14 18.6 

16 17.1 17 17.9 16 18.2 

85 89.2 88 90.2 87 91.5 

15×10 

16 17.2 17 18.3 18 19.1 

18 19.8 18 20.3 19 21.2 

90 93.8 95 97.5 94 97.9 

15×15 

17 17.6 18 18.9 18 19.4 

20 22.1 21 23.6 21 23.9 

92 95.7 95 99.7 95 100.2 

      Fig. 2 is the Gantt diagram of the optimal solution obtained by the IWOA for sample 10×7. 
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Figure 2: The optimal solution obtained by the IWOA for sample 10×7. 

      In Fig. 2, each square represents an operation. For each square, the vertical coordinate is 

the serial number of the operation machine, and the left and right boundaries are the start time 

and end time of the operation, respectively. As shown in Fig. 2, the scheduling results 

basically converged to the best-known solution. 

      For sample 10×10, all three algorithms reached the optimal solution. 

      Fig. 3 is the Gantt diagram of the optimal solution obtained by the IWOA for sample 

15×10, the most complex case in the benchmark example. 

 

Figure 3: The optimal solution obtained by the IWOA for sample 15×10. 

      It can be seen that our algorithm still converged to the optimal solution, despite the high 

complexity of the sample. 
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6. CONCLUSIONS 

The WOA is a new swarm intelligence algorithm. But the algorithm has many defects in 

solving discrete optimization problems like the JSP. To solve the defects, this paper puts 

forward the IWOA based on quantum computing. The algorithm was subjected to the analysis 

on computing complexity, the demonstration of global convergence, and simulation 

verification. The results prove our algorithm outperformed the other swarm intelligence 

algorithms in the number of iterations, convergence accuracy and global search ability in 

solving the JSP. The future research will further improve the application performance of the 

IWOA. 
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