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Abstract 

To survive the fierce market competition, many manufacturing enterprises have applied integration 

measures at all levels of the production process. Against this backdrop, this paper mainly establishes a 

job-shop scheduling problem (JSP) that aims to minimize the makespan of products through integrated 

scheduling of machining and assembly under batch production environment. Then, the established 

problem was modelled considering the influence of different batch number on the makespan. In view 

of the complexity and discreteness of the established problem, a genetic algorithm (GA) was designed 

to obtain the optimal scheduling sequence in different batch production situations. The effectiveness of 

our problem model and algorithm was verified through the analysis on an example with different batch 

conditions. The research findings help to design a realistic and feasible scheduling plan for 

manufacturing enterprises. 
(Received, processed and accepted by the Chinese Representative Office.) 
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1. INTRODUCTION 

With the growing demand for personalized products, manufacturing enterprises are engaged 

in an increasingly fierce competition in the market [1, 2]. To survive the market competition, 

many manufacturing enterprises have applied integration measures at all levels of the 

production process, ranging from the integration between planning and scheduling to that 

between production and transport. Among the various integration measures, the integrated 

scheduling of machining and assembly greatly improves the production efficiency, shortens 

the production cycle, and reduces the production cost, compared with the traditional separated 

scheduling of the two operations. 

      The job-shop scheduling (JSP) is a hotspot in the research of production scheduling. Let n 

be the number of jobs and m be the number of machines. Assuming that each job has a unique 

process route, the basic JSP [3, 4] aims to minimize the makespan by adjusting the machining 

sequence of jobs on each machine, without violating the process route of any job. 

      So far, much research has been done on the JSP. For example, Sharma et al. [5] improved 

the artificial bee colony (ABC) algorithm for basic JSPs, and verified its superiority with 

multiple standard sets. Piroozfard et al. [6] designed an improved biogeography-based 

optimization (BBO) algorithm, carried out a comparative analysis on standard examples, and 

proved that the improved BBO outperformed contrastive algorithms like greedy randomized 

adaptive search procedure (GRASP), parallel genetic algorithm (PGA) and heuristics genetic 

algorithm (HGA). Akram et al. [7] developed a fast-simulated annealing (SA) algorithm for 

basic JSPs, which effectively avoids the local optimum trap. Amirghasemi and Zamani [8] put 

forward an improved genetic algorithm (GA) to solve the JSP. 

      With the development of manufacturing technology, many multi-functional computer 

numerical control (CNC) machine tools have emerged. Such a machine tool supports multiple 

machining operations, such as turning and milling. Therefore, multiple machines are available 

for the same machining operation of jobs. The one-to-many relationship between operation 
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and machine has been introduced to the basic JSP, creating a new branch of the JSP called 

flexible job-shop scheduling problem (FJSP). Considering energy conservation, Mokhtari and 

Hasani [1] proposed an improved evolutionary algorithm to solve a multi-objective FJSP. 

Xiao et al. [2] set up a new hybrid Petri network model based on the common hybrid Petri 

network and with a combination of differential Petri net and controlled Petri net. Kato et al. 

[9] set up a model of a multi-objective FJSP, and created a hybrid particle swarm optimization 

(PSO) algorithm to minimize the makespan, maximum machine load and total load of the 

problem. Wu and Sun [10] modelled the FJSP for the minimal makespan and energy 

consumption, and solved the problem with a non-dominated sorting genetic algorithm 

(NASGA) with heuristic rules. Focusing on the machining time, Lin [11] established a model 

of the FJSP, and solved the problem with a hyper heuristic algorithm based on backtracking 

search. 

      In addition, many new factors have been introduced to the basic JSP. For instance, 

Kuhpfahl and Bierwirth [12] included the delivery date in the JSP, constructed a model of the 

problem for the minimal total tardiness penalty, and solved the model with an improved local 

search algorithm. Chaouch et al. [13] presented an improved ant colony optimization (ACO) 

algorithm to tackle a distributed JSP. Taking machines and operators as resources, Li et al. 

[14] modelled a parallel-resource JSP, and proposed an improved GA to solve the problem. 

Considering delivery time, Yazdani et al. [15] established a JSP for the minimal 

early/tardiness penalty, and solved the problem model with an improved competition 

algorithm. Kundakci and Kulak [16] explored a JSP with random insertion, machine failure 

and variable working hours. Bierwirth and Kuhpfahl [17] built a model of the JSP for the 

minimal tardiness penalty, and extended the GRASP to solve the model. 

      There are two main defects of the existing studies on the JSPs. First, the basic JSP only 

pursues the minimal makespan in the machining process, while the machining scheduling and 

assembly scheduling in actual production are closely intertwined. The machining scheduling 

focuses on machine control in the job shop, while the assembly scheduling highlights the 

resource optimization in the assembly line. Second, the existing JSP models rarely consider 

the batch factor, which is a common production mode in actual production. To overcome the 

defects, this paper establishes a JSP for the minimal makespan through integrated scheduling 

of machining and assembly in batch production environment. Then, the problem was 

modelled and solve by a GA, aiming to optimize the machining sequence under different 

batch conditions. 

2. PROBLEM DESCRIPTION 

In the established problem, each product can be broken down into various parts. These parts 

need to be machined through multiple operations, and then assembled into components. The 

components will in turn be assembled into products. During the production, the parts are 

machined in batches. The production process is constrained by multiple factors, namely, 

operation sequence and machine resources. 

      To minimize the makespan through integrated scheduling of machining and assembly, the 

equal-batch splitting strategy was adopted to determine the batch of each part on the 

machining line and at each assembly node, and identify the machining sequence of each batch 

of parts. 

      For the minimal makespan of the products, the optimal scheduling plan should be 

obtained by determining the number, size and machining sequence of parts in batch 

production, considering the preparation time in parts machining. 
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3. MODEL CONSTRUCTION 

The following symbols were defined before setting up a minimum makespan model for 

integrated scheduling of machining and assembly in batch production environment: makespan 

(MS); the total batch size of part i (Ni); the batch of type i parts (Pi); the batch number 

corresponding to sub-batch b of part i (PCib); the smallest batch of parts (PC
min 

i ); the number 

of part types (n); the number of assembly nodes (m); the number of machines (p); the number 

of machining operations for part i (qi); the makespan of machining operation j of sub-batch b 

of part i on machine k (EMibjk); the makespan of sub-batch b of assembly node j (EAjb); the 

Boolean variable about whether machining operation j of sub-batch b of part i is implemented 

on machine k (Oibjk) (if yes, Oibjk = 1; otherwise, Oibjk = 0); the unit machining time of part i on 

machine k (TM(i,k)); the machining time of sub-batch b of part i on machine k (TMibk); the 

completion time of the assembly of sub-batch b on assembly node j (TAjb); the preparation 

time for machining operation j of sub-batch b of part i on machine k (BFibjk); the type of part i 

on machine k (SNki); the start time of sub-batch b of part i on machine k (SMibk); the start time 

of sub-batch b of part i on assembly node j (SAjb); the machining sequence of sub-batch a and 

sub-batch b of part i on machine k (SFiabk); the Boolean variable about the machining 

sequence of sub-batch b and sub-batch j of part i on machine h and machine k (Xibnk); the 

Boolean variable about the machining sequence of sub-batch b and sub-batch j of part i on 

machine k (Yijk); the Boolean variable about whether part i is processed on assembly node j 

(RAj). 

      Considering the influence of the number of batches of the part being machines/assembled 

on the scheduling result, the minimum makespan model for integrated scheduling of 

machining and assembly in batch production environment can be established as follows: 

      Objective function: 

Min(MS) = Min(max(PCjbTAjb))        (1) 

      Constraints: 

      (1) The relationship between the total number of parts and the sub-batch of parts: 

i

p

b

ib NPC

i
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     (2) 

      (2) The makespan of machining operation j in sub-batch b of part i on equipment k: 
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      (3) Machining sequence of parts in different batches on the same machine: 
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      It is assumed that sub-batch a and sub-batch b of part i on equipment k are machined one 

after the other, i.e. SNki = ia, SNk(i+1) = ib and BFibjk = 0. 

      (4) Machining sequence of the same part in the same batch on different machines: 
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        (6) 

      (5) The same machining operation of different batches of parts cannot be processed on 

multiple machines at the same time: 
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      (6) The multiple machining operations of a batch of parts cannot be processed on the same 

machine at the same time: 

kiO
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      (8) 

      (7) Assembly node j cannot be started before the required parts are completely machined: 

min)1( ijj PCRAPCA              (9) 

}...,,min{ 321min n
iiiii PCPCPCPCPC       (10) 

      (8) Equal-batch splitting constraint on batch size and the total number of products: 

fix( ) 1,2, , 1i
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4. ALGORITHM DESIGN 

This paper decides to design a GA to solve the complexity and discreteness of the established 

problem. The key steps of the algorithm design are introduced in this section. 

4.1  Coding 

The coding method was designed based on the type and batch of parts. Each chromosome 

represents the batch type, the number of sub-batches and the scheduling sequence of the sub-

batches of each part. In each chromosome, a gene is expressed by two digits. For example, 

“31” means the first sub-batch of the third type of part. Besides, the sequence of numbers in a 

chromosome stands for the machining sequence and the machining operation of each sub-

batch of the part. As shown in Table I, the chromosome {21 11 31 22 21 12 13 32 31 31 32 21 

12 11 22 12 32 22} describes the machining of three types of parts. Each type of part is 

divided into two batches of machining. Each part needs to receive three machining operations. 

The first 21 represents the first machining operation of the first sub-batch of the second type 

of part, and the second 21 represents the second machining operation of the first sub-batch of 

the second type of part. The rest can be deduced by analogy. 

Table I: An example chromosome. 

Machining sequence of sub-batch 21-1 11-1 31-1 22-1 21-2 12-1 13-1 32-1 31-1 

Gene 21 11 31 22 21 13 32 31 31 

Machining sequence of sub-batch 31-2 32-2 21-3 12-2 11-2 22-2 12-3 11-3 22-3 

Gene 32 21 12 11 22 22 12 11 22 

4.2  Crossover 

To prevent infeasible solutions, a POX crossover operator [18] was employed to randomly 

generate a part type number in two parent chromosomes. Once the positions of all batches of 

part are determined, these positions were directly swapped in one child chromosome. Then, 

the other child chromosome with other genes was padded (Fig. 1). 
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Figure 1: Crossover operator of batch scheduling. 

4.3  Verification of feasible solution 

In our problem, there are sequential constraints between assembly batches and machining 

batches of parts. To eliminate infeasible solutions, it is necessary to verify the feasibility of 

each solution in the following steps: 

      Step 1. Traverse all positions of the chromosome to find the final product and batch to be 

assembled. 

      Step 2. Judge whether the part number is in the last position of the chromosome. If not, the 

part number is swapped with that of the part at the last position; if yes, go to Step 3. 

      Step 3. Find the type and batch number of the part in the second to last position and record 

the current position of the part number, denoted as P. 

      Step 4. Determine whether the parts required for the assembly position have been 

completed before P. If not, go to Step 5; if yes, terminate the judgement process. 

      Step 5. Adjust the positions of all parts that do not meet sequential constraints until all 

subparts are completed before assembly. 

4.4  Parameter definition 

The parameters of the GA as defined as follows: population size (N); coding length of 

chromosome (Lchrom); crossover probability (Crossover); mutation probability (Mutr); 

number of iterations (Generation). The workflow of the proposed GA is illustrated in Fig. 2. 

Initialization parameters：N，lchrom，Crossover，Mutr

Decode and record the iteration to the current optimal solution 

min_time and individual fitness value t_opiz

t_opiz(i)=min_time?

Put into the next generation 

t_opiz(i)=2 Next_pop(i)

Randomly generated crossover probability Pm∈(0，1)

i=N?

Take two parents who meet the conditions in turn to perform cross 

operations.

Generate random numbers rd

Pm<Crossover?

Counter j=0

j=N?

Put the two individuals after the intersection into the next 

generation population，j=j+2

e++

e=Generation?

Iterative completion, output optimal solution, end

Start

Y

Y

Y

Y

N

N

N

N

N

Counter i=0

Counter e=0

Y

t_opiz(i)<rd?

Next_pop(i)

Random variation probability Pf∈(0，1)

Mutating the individual

Pf <Mutr?

Counter k=0

k=N?

Put the mutated individuals into the next generation population，
k++

Y

N

Counter m=0

Feasible solution?

m++

Transform into a feasible solution

m=N?

N

Y

Y
N

N

Y

 

Figure 2: The workflow of the GA. 
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5. EXAMPLE VERIFICATION AND RESULTS ANALYSIS 

This section aims to verify the effectiveness of the proposed algorithm in solving the 

established problem with real-world examples. The structure of the example product is shown 

in Fig. 3, which needs to be produced in 12 batches. The relationship between parts, 

components and machines are displayed in Table II. It can be seen that there is a total of five 

parts, J1-J5, each of which needs go through five machining operations. Besides, there are 

three components: P6-P8, five machines: M1-M5, and four assembly nodes: M6-M9. The 

assembly cannot start before the corresponding parts have been machined. Assembly and 

machining of different parts can take place concurrently. 

A

J1

P7P6

J2 J3

J5

J4

P8

 

Figure 3: The product structure. 

Table II: The relationship between parts, components and machines. 

Parts 
Processing and assembly machine tools 

M1 M2 M3 M4 M5 M6 M7 M8 M9 

job1 3 6 4 7 6 0 0 0 0 

job2 10 8 5 4 10 0 0 0 0 

job3 9 5 5 4 7 0 0 0 0 

job4 5 3 9 3 5 0 0 0 0 

job5 10 3 5 3 4 0 0 0 0 

part6 0 0 0 0 0 20 0 0 0 

part7 0 0 0 0 0 0 25 0 0 

part8 0 0 0 0 0 0 0 30 0 

A 0 0 0 0 0 0 0 0 35 

Table III: The machine for each product or part. 

Parts 
Processing procedure 

1 2 3 4 5 

job1 M3 M1 M2 M4 M5 

job2 M2 M3 M5 M1 M4 

job3 M3 M4 M1 M2 M5 

job4 M2 M1 M3 M4 M5 

job5 M3 M2 M5 M1 M4 

Components and 

products 

Assembly procedure 

1 2 3 4 5 

part6 M6 M6 M6 M6 M6 

part7 M7 M7 M7 M7 M7 

part8 M8 M8 M8 M8 M8 

A M9 M9 M9 M9 M9 
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5.1  Hypotheses 

(1) Each part that has been machined is transported directly to the assembly node for 

assemblage. 

(2) Each machine can only process one batch of parts at a time. 

(3) The parts must be processed according to the machining sequence. No machining 

operation can be skipped. 

(4) The products can wait between machining operations. The machines are idle if no 

product arrives. 

(5) The machines never break down. 

5.2  Results analysis 

The GA parameters were configured as: population size, 35; number of iterations, 500; 

crossover probability, 0.9; mutation probability, 0.1. The product was divided into equal 

batches, and the GA was programmed on the Matlab. The optimal solution is given in Fig. 4. 

The start time of machining, corresponding machine and makespan of each component and 

assembly in the optimal schedule are shown in Fig. 5. 

 

Figure 4: The optimal makespan curve of two-batch condition. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M1
M2
M3
M4
M5
M6
M7
M8
M9

42 21 5232 22 5141 11 31 12
21 11 22 31 12 325141 42

2111 32 31 12 41 51 22 52 42
31 11 41 32 12 21 42 22 5152

21 11 31 41 52 12 22 51
61 62

42 32

71 72
81 82

91 92

Job1 Job2 Job3 Job4 Job5 Part6Part7Part8Part9

52

 

Figure 5: The Gantt chart of the scheduling of two equal batches (h). 

      From the above results, it can be seen that, under two equal batches, the optimal makespan 

was 1,080 min, i.e. 18 h, and the optimal solution was {11 41 21 32 41 11 31 11 21 31 11 22 

21 12 21 22 31 12 41 51 31 12 42 51 22 52 42 41 32 12 11 31 41 71 12 52 42 21 61 32 42 32 

52 12 22 51 22 62 52 42 32 72 51 52 81 82 91 92}. 
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      Without changing the algorithm parameters, the three-batch and one-batch conditions 

were simulated. The results are as shown in Table IV and Figs. 6 to 9.  

Table IV: The optimal solutions of various batch conditions. 

Batch strategy Optimal makespan (min) 
Equal quantity /3 batches 1,159 

Equal quantity /2 batches 1,080 

One-batch 1,602 

 

Figure 6: The optimal makespan curve of one-batch condition (optimal value: 1,602 min). 

4 8 12 16 20 24 28

M1
M2
M3
M4
M5
M6
M7
M8
M9

Job1 Job2 Job3 Job4 Job5Part6Part7Part8Part9

 

Figure 7: The Gantt chart of the scheduling of one-batch condition. 

 

Figure 8: The optimal makespan curve of equal batch conditions. 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

M1
M2
M3
M4
M5
M6
M7
M8
M9

Job1 Job2 Job3 Job4 Job5 Part6Part7Part8Part9

22 31 33 21 51 32 231213 42 41 4311 52 53
21 22 234243 4112 13 115152 5331 33 32

32 31 331312 1122 21 2352 51 5342 43 41
3132 33 13 12 1122 21 2342 43 4151 52 53

22 21 2351 52 5313 11 1242 43 4132 33 31
61 62 63

71 72 73
81 82 83

91 92 93

19  

Figure 9: The Gantt chart of the scheduling of equal batch conditions. 

      According to the simulation results, the author compared the one-batch condition with 

equal batch conditions. 

      (1) The optimal makespan of the no batch condition was inferior than the equal batch 

conditions. If the products are not processed in batches, some machines will work 

continuously for a long time. A machined part cannot enter the assembly line until the entire 

batch is machined. Under equal batch conditions, each machine works for a shorter time, and 

different parts of the same product are processed at the same time. In this way, the makespan 

is effectively shortened. 

      (2) The optimal makespan of two-batch condition is better than that of three-batch 

condition. With the increase in the number of batches, there is a dramatic increase in the 

number of feasible solutions. In this case, the GA may fall into the local optimum trap. 

6. CONCLUSIONS 

Considering the integration between machining and assembly, this paper establishes a JSP 

that aims to minimize the makespan through integrated scheduling of the two operations in 

batch production environment. Next, a GA was designed in detail to overcome the complexity 

and discreteness of the established problem. The effectiveness of our model and algorithm 

was verified through example analysis. The results show that equal-batch scheduling brought 

shorter makespan than one-batch scheduling. The future research will improve the GA for our 

JSP, aiming to create a scheduling plan with better quality. 
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