
Int j simul model 19 (2020) 1, 157-168

ISSN 1726-4529 Original scientific paper

https://doi.org/10.2507/IJSIMM19-1-CO4 157

A NOVEL SOLUTION TO JSPS BASED ON LONG SHORT-

TERM MEMORY AND POLICY GRADIENT ALGORITHM

Ren, J. F.
*,**

; Ye, C. M.
*,#

 & Yang, F.

* School of Business, University of Shanghai for Science and Technology, Shanghai 200093, China

** School of Computer and Information Engineering, Henan University of Economics and Law,

Zhengzhou 450018, China
*** School of Management, Henan University of Chinese Medicine, Zhengzhou 450018, China

E-Mail: yechm@usst.edu.cn (# Corresponding author)

Abstract

Based on long short-term memory (LSTM) and policy gradient algorithm, this paper proposes a novel

solution to the job-shop scheduling problems (JSPs). Firstly, two LSTM networks with identical

structures were established, serving as the encoding and decoding networks, respectively. Next, a

pointer network was introduced to determine the job with the highest priority in the current state,

creating a job sequence. Another neural network (NN) was constructed to evaluate the current job

sequence. The evaluation results were taken as the baseline of the policy gradient algorithm for

reinforcement learning. Then, the job sequence was optimized and updated by gradient descent. The

effectiveness of our method was demonstrated through contrastive experiments on benchmark

problems.
(Received in October 2019, accepted in January 2020. This paper was with the authors 2 months for 1 revision.)

Key Words: Job-Shop Scheduling Problem (JSP), Long Short-Term Memory (LSTM), Pointer

Network, Policy Gradient Algorithm

1. INTRODUCTION

Currently, the manufacturing industry is faced with a host of problems, ranging from

overcapacity, shrinking profit margins to increasingly unhealthy competition. These

problems pose a severe challenge to manufacturing enterprises. In addition, there are some

unique problems with the manufacturing enterprises in China: the industrial structure is

distorted, the demographic dividends are diminishing, and the labour cost is soaring. Almost

every manufacturing enterprise in China is operating under the pressure of high cost and low

output. Against this backdrop, the manufacturing industry has reached the consensus to

reshape the development mode with information technology.

 In the course of production, the complexity of scheduling directly bears on the cost and

profit of the enterprise. The production process should be scheduled efficiently to make full

use of machines, complete tasks on time and reduce the inventory cost. For manufacturing

enterprises, many business processes (e.g. production, transport planning and network

communication) can be abstracted into job-shop scheduling problems (JSPs), which are non-

deterministic polynomial-time (NP) hard. This NP-hard problem severely bottlenecks the

implementation of the production plan.

 The JSPs have long been a research hotspot among researchers and technicians. Akram

and Kamal [1] hybridized simulated annealing (SA) with quenching to solve the JSPs. Aiming

to maximize the makespan, the hybrid approach executes the quenching process as per the

quenching plan, performs an enhanced search on the hyperplane of the local hyper-fitness

function, and converges to the global optimum solution by increasing the number of

iterations. Considering various factors related to job sequence (e.g. machines and

unexpectedness), Roshanaei et al. [2] developed a mixed-integer linear programming model

to solve the JSPs, minimized the maximum makespan by adaptively modifying a meta-

https://doi.org/10.2507/IJSIMM19-1-CO4
mailto:yechm@usst.edu.cn

Ren, Ye, Yang: A Novel Solution to JSPs Based Long Short-Term Memory and Policy …

158

heuristic algorithm, and proved the superiority of the algorithm through experiment. Based on

tabu search, Gonzalez et al. [3] designed an advanced scatter search algorithm to solve the

JSPs, and attributed the good performance of the algorithm to a new neighbourhood structure,

which relies on a non-anticipatory feature map with set time. Pongchairerks [4] proposed a

two-level meta-heuristic algorithm for the JSPs. On the upper level, a population-based

algorithm controls the parameters of the lower level; on the lower level, a local search

algorithm searches for the optimal schedule in the solution space.

 Many scholars have introduced neural networks (NNs) to solve the JSPs. For example,

Foo and Takefuji [5] was the first to apply the Hopfield neural network to the JSPs, creating a

model with the structure of a stochastic neural network (SNN). Yang and Wang [6] solved the

JSPs with a constrained adaptive neural network and several heuristic algorithms. Jain and

Meeran [7] improved the adaptability of an NN with a trained mechanism of backward error

propagation, and effectively solved the JSPs with a Hopfield neural network. Yang and Wang

[8] combined an NN with a heuristic algorithm to adaptively adjust the connection weights,

and verified the feasibility of the adjustment strategy through simulation. Taking the genetic

algorithm (GA) as the benchmark, Weckman et al. [9] designed an NN-based hybrid

intelligent system to create an optimal job-shop scheduler, which maps the job operations to

the decision features and solves the scheduling with the trained NN. Silva et al. [10] predicted

the makespan and delivery deadline (DD) of a hypothetical dynamic job-shop, using an

artificial neural network (ANN), constructed an allocation model based on the ANN and two

dynamic allocation rules, and confirmed the effectiveness of the model through contrastive

experiment.

 With the development of computing power and artificial intelligence (AI), sequence

problems have been successfully solved by recurrent neural networks (RNNs), shedding new

light on the solution to the JSPs. Considering the excellence of deep NNs in complex

learning, Sutskever et al. [11] presented an end-to-end sequential learning method with the

fewest hypotheses on sequence structure, in which the input sequence is mapped to a fixed-

dimension vector by a multilayer long short-term memory (LSTM), and the target sequence is

decoded from the vector by another deep LSTM. Fonseca and Navaresse [12] created an

innovative ANN that can effectively replace traditional methods in job-shop simulation: the

ANN was trained by the reverse error propagation mechanism of the multilayer neural

network meta-model, producing a general JSP analysis framework; the ANN-based

simulation effectively captured the relationship between the machine sequence of a job and

the mean flow time of the sequence.

 In addition, heuristic algorithms have achieved good results in solving the JSPs. For

instance, Mnih et al. [13] applied the deep reinforcement learning (DRL) successfully in the

application of Atari games. The DRL was proved effective in solving to continuous and

discrete tasks, through the training with a variant of the asynchronous actor-critic framework.

Pfau and Vinyals [14] tackled the optimization problem related to generative adversarial

networks (GANs) and reinforcement learning, summed up the generalization strategies of the

two types of models, and came up with a scalable and stable multi-level optimization

algorithm based on deep networks. Zhang et al. [15] combined particle swarm optimization

(PSO) and the NN to solve the JSPs. Each particle in the swarm was considered a connection

in the NN, and the connection weights were updated iteratively according to the latest

positions of the corresponding particles. In this way, the NN no longer falls into the local

optimum trap, and applies to the minimization of the maximum makespan of a single-

objective JSP.

 There are two major drawbacks of the heuristic algorithms: limited solution quality and

poor adaptability. The solution quality of a heuristic algorithm is limited, because the

algorithm must traverse the solution space by the heuristic rules of the problem. The heuristic

Ren, Ye, Yang: A Novel Solution to JSPs Based Long Short-Term Memory and Policy …

159

algorithm lacks adaptability, in that any change to the problem or problem scale requires a

modification of the algorithm. Moreover, most existing deep or reinforcement learning

algorithms are adopted to handle problems like chess games and travelling salesman problem

(TSP). Only a few studies have applied deep or reinforcement learning algorithms to solve the

JSPs. In these studies, deep or reinforcement learning either adopts heuristic algorithms or

mimics the search process of heuristic algorithms. However, no meaningful result has been

achieved by these studies.

 This paper puts forward a novel solution to the JSPs, which fully exploits the structural

features of deep learning and reinforcement learning. Without requiring the heuristic rules of

the problem, our solution maps the JSP to a problem that suits the learning framework, and

conducts reinforcement learning by strategy gradient optimization [16-18]. Besides, the

common features of jobs were mined through learning and training, and used to enhance the

adaptability of our solution. The research results provide new insights into the JSPs.

2. PROBLEM DESCRIPTION

Being the hardest NP-complete problems, the JSPs are difficult to solve in polynomial time.

In common JSPs, there is a unique machine, which is known in advance, for each operation.

A flow shop scheduling problem (FSSP) is a special case of the JSP, while a flexible JSP

(FJSP) is an extension of the JSP, in which a number of machines are optional for each

operation. Thus, the solution to the JSP can be easily extended to relevant scheduling

problems.

 In general, a JSP can be described as using m machines to process n independent jobs,

each of which needs to go through h operations. The following constraints must be satisfied to

solve the JSP:

 Constraint 1. The operations of different jobs are independent of each other, i.e. there is

no sequential constraint between operations. The operation sequence and makespan of each

job are known in advance, and remain the same throughout the production.

 Constraint 2. The processing of each job starts at time 0, and no interruption is allowed

once the processing starts.

 Constraint 3. Each machine can only process one job at a time. The subsequent operation

cannot begin before the completion of the current operation. The machine failure is as rare as

negligible.

 Constraint 4. Each job can only be processed on one machine at a time, and can be

processed only once by each machine.

 Let J = {1, 2,…, n} be the set of jobs, M = {1, 2,…, m} be the set of machines, and

O = {1, 2,…, O} be the set of operations, where Oij is the j
th

 operation of the i
th

 job. The set of

operations O can also be defined as the collection of the operation subset of each job (the

subset of the operations of each job).

 For a given job-shop scheduling task, it is necessary to search the space of all possible

operation sequences, and find the operation sequence that meets the objectives under various

constraints.

 Unlike heuristic algorithms, our solution is a data-driven, end-to-end approach to solve the

JSP. In our solution, the constraint relationships between the operation sequences are learned

under a deep reinforcement learning framework. Without following heuristic rules, the

objectives of the JSP were achieved by optimizing and training the learning framework

parameters, and solving new problems with the trained framework. Our solution boasts a high

adaptability, for the heuristic search strategy of the trained framework is not limited to a

specific problem.

Ren, Ye, Yang: A Novel Solution to JSPs Based Long Short-Term Memory and Policy …

160

 Machine learning falls into three categories: supervised learning, unsupervised learning,

and reinforcement learning. Over the years, supervised learning has attracted more attention

than the other two types, especially in such fields as gaming, image recognition and voice

recognition. For two reasons, supervised learning has not been widely applied in combinatory

optimization of the JSPs: (1) It is costly and difficult to obtain the labels of samples; (2)

Considering the various evaluation indices for job-shop scheduling, different targets should be

evaluated by the mixed use of sample labels, which prolongs the training time and slows

down convergence. Experiments have shown that supervised learning is not as effective as

reinforcement learning in solving the JSPs.

 In the light of the features of reinforcement learning, the difference between operation

sequences was taken as a feedback reward signal, and a hybrid solution for the JSPs was

designed based on both deep learning and reinforcement learning. In the hybrid solution, the

strategy gradient optimization is performed to refine the parameters of a RNN, and the target

of job-shop scheduling target was treated as a long-term reward. Next, the Monte Carlo tree

search (MCTS) was added to improve the learning performance.

3. RNN FRAMEWORK

This paper attempts to solve the JSP with deep reinforcement learning. The set of operations

was modelled as a sequence-to-sequence problem, i.e. the sequential relationship between

operations was determined based on their constraint relationship.

 As shown in Fig. 1, the NN framework of deep reinforcement learning consists of an

encoding network and a decoding network. The two networks are LSTM RNNs with the same

structure, and connected by a pointer network.

 In each time step, the decoding network outputs the most probable operation and

feedbacks the information on the output operation via the pointer network to the

corresponding time step of the encoding network. Upon receiving the information, the

encoding network will take it as the input for the next time step.

1o 2o 3o 4o 5o 6o

LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM LSTM

3o 2o 1o 6o 5oO

Figure 1: The NN framework of deep reinforcement learning.

 All the operations in O are imported to the LSTM of the encoding network. In each time

step, the d-dimensional embedding vector 𝑂̅ of an operation is inputted into the LSTM, and

the operation is converted into a d-dimensional memory state sequence {𝑒𝑛𝑐𝑖}𝑖=1
𝑛 . Meanwhile,

the corresponding unit state is outputted for the next time step.

 For the encoding network, three items are inputted in the next time step: the output of the

previous time step, the embedding vector of another operation, and the most probable

operation (acquired in the decoding network and fed back via the pointer network). The first

Ren, Ye, Yang: A Novel Solution to JSPs Based Long Short-Term Memory and Policy …

161

step of encoding needs two inputs, namely, the embedding vector of the first operation and

the most probable operation.

 For the decoding network, the input in the first time step is the d-dimensional memory

state sequence {𝑑𝑒𝑐𝑖}𝑖=1
𝑛 from the encoding network. Each step of decoding has two inputs

and one output. However, the inputs in the first step include the unit state of the last step of

the encoding network, and the d-dimensional embedding vector of the operation. The data in

each dimension of the vector can be used as a set of trainable parameters. Each step of

decoding generates an operation with the highest pointing probability in the current state,

serving as the input of the next step of decoding.

4. POINTER NETWORK

The pointer network is a simplified version of the attention mechanism. Coupled with a RNN,

the pointer network can effectively solve combinatorial optimization problems by mapping

them to sequence problems. The coupled strategy outshines the pointer networks proposed by

Vinyals et al. [19] and Bahdanau et al. [20] in two aspects: (1) the operation to be outputted

can be positioned, replacing the simple index output; (2) the computing complexity is greatly

reduced by the first-step calculation of the attention mechanism.

 In general, the minimal maximum makespan of the JSP can be taken as the evaluation

target:

C ( O) = min{max Ci, i = 1, 2, …, n} (1)

where, Ci is the makespan of job Ji.

 The JSP can be considered a special sequence-to-sequence problem. If the stochastic

strategy p(π|O) is parameterized (i.e. probabilities are assigned to the operations in O), then

the operation with shorter maximum makespan will be assigned higher probability. The

probability assignment ensures that each step of decoding outputs the most probable

operation:

,
n

i 1:i-1
i=1

p()= p()|o | o  

(2)

 Drawing on the attention mechanism, the non-parameterized softmax function can be

adopted to express the pointing result of the current operation as a probability. Hence, the

operation position of the encoding network is determined through the attention mechanism.

 In our deep reinforcement learning framework, the reference vectors of the attention

mechanism can be described as ref = {enc1, enc2, …, encf}, and the query vector of the

attention mechanism as q = deci. Then, the attention scoring function can be expressed as an

additive model:
T

i ref i qs(enc ,q)= v tan(W enc +W q)  

(3)

where, v is the attention vector of the d-dimensional scoring function; Wref and Wq are the

attention matrices of the dd -dimensional scoring function. v, Wref and Wq are trainable

parameters.

 Note that, in a computing cycle, a job can only be processed once on a machine at a time,

according to the JSP constraints. Thus, the score of the operation pointed by the pointer

network must be set to infinitely small, such that the same operation will not be pointed at

again.

 Next, the attention distribution of each operation can be computed by:

()

()
 =

i i

i

N

Jj=1

att softmax s(enc ,q)

exp s(enc ,q)

exp(s(enc ,q))





(4)

 The following can be derived from Eq. (5):

Ren, Ye, Yang: A Novel Solution to JSPs Based Long Short-Term Memory and Policy …

162

,

 ()

()
 =

n

i 1:i-1
i=1

i

i

N

Jj=1

p()= p()

softmax s(enc ,q)

exp s(enc ,q)

exp(s(enc ,q))

|o | o  





(5)

5. ATTENTION MECHANISM

Facing the JSPs, the heuristic algorithms have a common defect: their performance will

degrade significantly if the problem is large, resulting in premature convergence or non-

convergence. This defect is inherited by our solution, which adopts the deep reinforcement

learning mechanism. To solve the defect, a viable option is to calculate the weighted mean of

query vectors based on the attention distribution vector of the pointer network, i.e. to sum up

the input information. This option helps to reveal the potential correlations between the

operations.

 The attention distribution function has the same structure and input as Eq. (4). The only

difference is that the attention vector v
att

 and attention matrices 𝑊𝑟𝑒𝑓
𝑎𝑡𝑡 and 𝑊𝑞

𝑎𝑡𝑡 of the function

are independent trainable parameters:
T

att att

i ref i ref
attS(enc ,q)= tan(W enc +W q)v   

(6)

()

()
 =

i i

i

N

Jj=1

ATT softmax S(enc ,q)

exp S(enc ,q)

exp(S(enc ,q))





(7)

 The degree of attention paid to an operation in the current time step can be described as an

information summary function:

1

f
att att att

ref q i i

i

Glimps(ref,q;W ,W ,v) enc ATT


 

(8)

 Since the attention vector v
att

 and the attention matrices 𝑊𝑟𝑒𝑓
𝑎𝑡𝑡 and 𝑊𝑞

𝑎𝑡𝑡 are trainable

parameters, an iterative calculation method can be introduced:

0 iG enc
 (9)

1

att att att

p p ref qG Glimps(ref,G ;W ,W ,v)

(10)

 The final attention vector Gp obtained by Eq. (10) is fed to the next time step in parallel

with the hidden unit state of the current time step.

6. STRATEGY GRADIENT OPTIMIZATION

The parameters of the learning framework were optimized by a model-free strategy gradient

algorithm in reinforcement learning. First, the strategy gradient method was implemented to

find a set of optimal parameters of the pointer network. Then, the expectation of operation

sequence for the objective function in the JSP was minimized:

p(|)(|) min oX E C()o |o


  

(11)

 Thus, the objective function can be defined as:

() o~OX E C()|o 

(12)

 Suppose the distribution function pθ(O) of operation set O is differentiable, the integral

form of Eq. (12) can be updated as:

() () () oX p o C o d   (13)

Ren, Ye, Yang: A Novel Solution to JSPs Based Long Short-Term Memory and Policy …

163

 The gradient can be expressed as:
() () () oX p o C o d      (14)

 According to the logarithmic derivative identity , we have:

()
() () ()

()
log()

p o
p o p o p o

p o
p o 

  


 
 

(15)

 Substituting Eq. (15) into Eq. (14), the stochastic gradient descent formula that optimizes

the reinforcement learning parameters can be defined as:

p ()()(|) () () ||oop oX O p o C o logp (o)C(o)d E    
       

 (16)

 When the JSP is solved by deep reinforcement learning, if the learning framework is

trained by small-scale samples, the algorithm may face difficulty in convergence, due to the

excessively large gradient in strategy optimization. Therefore, a baseline should be introduced

to improve Eq. (16) as:

p () ||oX(|O) logp (o)(C(o) b(o))E  
      

(17)

 The addition of the baseline reduces the variance of the gradient in strategy optimization,

without affecting the value of ∇𝜃𝑋(𝜃|𝑂). Without loss of generality, it is assumed that b(O) is

a constant. Then, the last term in Eq. (17) should be proved as zero.

 Proof:
p ()

()

()

()

| ()

O

O

O

o

logp o b(o)q

p o b(o)

b(o) p o

logp (o)b oE

p (o) d

d

d







  



   

 

 
  

 The value of ∫𝑃𝜃 (𝑜)𝑑𝑜 is obvious one. Thus, ∇𝜃
𝑙 must be zero. Then, the last term in Eq.

(17) must be zero.

 As shown in Fig. 2, two LSTMs and two fully-connected layers were designed to obtain

the baseline needed to solve the JSPs. Parallel computing was performed on the hidden results

of the two LSTM layers, followed by the calculations on the fully-connected layers. The

resulting scalar value was taken as the baseline. The Tanh activation function was adopted in

the fully-connected layers.

1o 2o 3o 4o 5o 6o

LSTM LSTM LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM LSTM LSTM

+ baseline
TanhTanh

Figure 2: Baseline solution network.

 The actor-critic algorithm is a reinforcement learning method based on strategy gradient

optimization. The actor uses the strategy function to generate actions and interact with the

environment, while the critic uses the value function to evaluate the actor’s performance and

f(x)
logf(x)

f(x)


 

Ren, Ye, Yang: A Novel Solution to JSPs Based Long Short-Term Memory and Policy …

164

corrects the next action of the action. The actor-critic algorithm has stringent requirements on

the state sequence, and iteratively updates the policy function separately. As a result, the

algorithm often has difficulty in convergence.

 To overcome the difficulty, this paper proposes the asynchronous advantage actor-critic

(A3C) algorithm (Algorithm 1) to reduce the correlation between empirical data of scheduling

and enhance the training result. To cope with the complexity of the JSP, the A3C implements

multi-threaded learning through the interaction with the environment, aiming to achieve

asynchronous and simultaneous learning. The parameters of the strategy function and the

value function were updated by gradient ascent and gradient descent, respectively.

Algorithm 1: The A3C for the JSP

Initialize parameters  and b

Initialize step counter t  1

Repeat

Set d  0 and db  0

Get current state st

Perform at according to  (at  st; ')

Receive rewards rt and st+1

Until terminal state or the maximum number of iterations

Do Loop

iR r R 

| |logp (o)d d (C(o) b(o))      
' '(| ;)i b bC(o) b(o)

b b
d d       

End Loop

 In the A3C, the results C(π|O) and b(O) are solved by the pointer network and the baseline

solution network, respectively, and then substituted into Eq. (17). During the calculation of

the scheduling algorithm, the C(π|O) is performed by Monte Carlo sampling in each small

batch, and the baseline calculation is performed by the common exponential moving average

(EMA) method:

| |
N

i i i i
1

1
(C(o) b)X() logp (o)

N
 

       

(18)

where, N is the size of a small batch.

1

1
(1) ()

N

ib b b
N

      

(19)

where, α is the smoothing index. The workflow of the A3C algorithm is shown in Fig. 3.

7. CONTRASTIVE EXPERIMENTS

7.1 Key parameters

Considering its importance in our solution, the parameters of the LSTM network must be

configured carefully before verifying the performance of the proposed algorithm. During the

experiments, the information of a job is inputted in each time step, a new internal state is

formed through gate setting, and the linear information is transferred cyclically to provide the

long-term memory of the encoding network. The nonlinear output of each time step was taken

as the external state of the hidden layer. Meanwhile, once the new job information was

inputted in each time step, the internal state and input information were converted to

nonlinear form to obtain the candidate state. After the information of the last job was inputted,

the network formed the memory of a complete internal state, facilitating the feature mapping

between jobs. This memory is very helpful to solve complex JSPs.

Ren, Ye, Yang: A Novel Solution to JSPs Based Long Short-Term Memory and Policy …

165

Input

Policy

Actor Critic

Network

 Value v

Operator

Environment

Operator

Environment

Operator

Environment

��

Operator

Environment

Operator

Environment

Trained network

Figure 3: The flow chart of the A3C algorithm.

 Our experiments verify the hyper-parameters of the hidden cells of the LSTM. For

comparison, the number of hidden units was set to 128, 256, and 512, respectively, in

different rounds. Finally, the number of hidden units of the LSTM cells was set to 256, i.e.

each job was converted into a 256-dimensional embedded vector by the encoding network.

 The training of the LSTM network shows that an excessively small value will reduce the

value of the forget gate, i.e. only a small portion of the information in the previous time step

has been memorized. Then, it is difficult for the network to capture long-range dependent

information. Besides, the excessively small gradient between adjacent time intervals would

cause the gradient dispersion problem. For this reason, the forgotten parameter was initialized

within [0.8, 1.0] and its offset was set to 1.

 In addition, sigmoid function was selected as the activation function of the forget gate,

input gate, and output gate in the LSTM, while the softsign function was taken as the unit

activation function for hidden state calculation. The softsign function can output a flatter

curve, and slow down the falling of the derivative, making the learning more efficient and

avoiding the vanishing gradient problem. Finally, the initial learning rate was set to 10
-5

.

7.2 Experimental procedure and results analysis

To verify its effectiveness, our algorithm was applied to solve 15 benchmark problems,

namely, LA16-20, TA36-40, and TA46-40. For comparison, the reinforcement learning uses

the REINFORCE and A3C architectures separately in different rounds, and a glance

mechanism (G) was added to the learning part of the pointer network. The benchmark

problems were solved separately by the improved tabu search-simulated annealing (TSSA)

and the improved genetic algorithm-tabu search (GATS); the better of the two results was

taken as the baseline.

Ren, Ye, Yang: A Novel Solution to JSPs Based Long Short-Term Memory and Policy …

166

 Each benchmark problem was run 30 times, and the mean value of each problem was

taken as the final result (Table I). It can be seen that the A3C with G achieved the best

performance: the results of LA16, LA18, TA36 and TA37 were close to or the same with the

result of the benchmark example; the results of TA40, TA47, TA48 and TA50 fell between

those of TSSA and GATS; the results of other examples were slightly better than those of

TSSA. Overall, our algorithm performed roughly the same as TSSA, and slightly worse than

GATS.

Table I: The results on benchmark problems.

Benchmark

problems
Scale

LSTM-RL

TSSA GATS REINFORCE

– with G

A3C –

with G

REINFORCE

– no G

A3C –

no G

LA16 1010 946.2 945.0* 950.4 948.1 945 945

LA17 1010 785.6 784.5 795 788.6 784 784

LA18 1010 850.2 848.2 855.1 852.1 848 848

LA19 1010 846.4 843.0 850.9 848.9 842 842

LA20 1010 906.2 903.5 912.4 909.7 902 902

TA36 3015 1,822.2 1,819.3 1,835.3 1,827.6 1,819 1,819

TA37 3015 1,780.1 1,778.0* 1,789.4 1,783.4 1,778 1,771

TA38 3015 1,675.2 1,674.0 1,675.3 1,674.9 1,673 1,673

TA39 3015 1,797.4 1,797.2 1,805.2 1,800.1 1,795 1,795

TA40 3015 1,679.3 1,676.2+ 1,685.3 1,684.1 1,676 1,673

TA46 3020 2,018.5 2,012.4 2,022.8 2,020.9 2,010 2,009

TA47 3020 1,908.2 1,904.4+ 1,917.3 1,915.6 1,903 1,898

TA48 3020 1,963.9 1,958.2+ 1,974.0 1,970.4 1,955 1,946

TA49 3020 1,973.0 1,968.4 1,980.2 1,977.4 1,967 1,965

TA50 3020 1,938.3 1,933.1+ 1,950.8 1,945.2 1,931 1924

Note: * indicates that the result reaches the same level as the results of TSSA and GATS;

 + indicates that the result falls between the results of TSSA and GATS.

 Fig. 4 compares the results of our algorithm with the benchmark results. Thirty results of

each benchmark example were used. Considering the scale difference between the problems,

the performance of our algorithm was verified by the relative error between the result of our

algorithm and that of the benchmark problem.

Figure 4: Comparison with benchmark results.

Ren, Ye, Yang: A Novel Solution to JSPs Based Long Short-Term Memory and Policy …

167

 Among the examples, LA16-20 are relatively small in scale. The relative error between

A3C – with G and these five benchmark examples was the smallest. With the growing

complexity of problem, the relative error exhibited a slow increase. The relative errors of

three other algorithms all fell in the acceptable range. These algorithms could be ranked as

A3C – no G, REINFORCE – with G, and REINFORCE – no G, in ascending order of relative

error. The experimental results show that the A3C algorithm had an obvious advantage over

REINFORCE in solving JSPs, and that the addition of glance mechanism to the pointer

network could improve the learning ability of the reinforcement learning framework.

 For medium-large scale examples (e.g. TA36-40), the relative errors of REINFORCE –

with G and REINFORCE – no G relative to benchmark results increased much faster than those

of A3C – with G and A3C – no G. This means the A3C remained superior over the REINFORCE

algorithm in solving largescale scheduling problems.

8. CONCLUSIONS

The heuristic algorithms are often adopted to solve the JSPs. This paper explores the search

patterns and constraints of these algorithms in solving the JSPs. Thanks to the rapid advances

in ANN, reinforcement learning, and computing techniques, the latest results of the AI

technology were absorbed to solve combinatory optimization, sequence decision-making, and

job-shop scheduling. Besides, the authors introduced the LSTM, pointer network, and strategy

gradient optimization to the JSPs. The long-term memory of the LSTM was effectively

employed to acquire and store the digital features and correlations between jobs, while a

pointer network was adopted to determine the priority probability distribution of the jobs in

the current state, creating an effective scheduling sequence. To improve the solution quality,

an NN was constructed to predict the baseline in parallel with the strategy gradient

optimization, thereby reducing the optimization variance and enhancing convergence

efficiency. In addition, a glance mechanism was added to the pointer network to further

improve solution quality.

 Our algorithm provides a brand-new method to solve the JSPs, while avoiding the

difficulty in sample collection through supervised learning. The future research will further

streamline the algorithm structure, improve solution quality, and minimize the deviation from

the benchmark results, laying a solid basis for intelligent manufacturing.

ACKNOWLEDGEMENT

The study was supported by National Natural Science Foundation, China (No. 71840003); Technology

Development Project of University of Shanghai for Science and Technology, China

(No. 2018KJFZ043).

REFERENCES

[1] Akram, K.; Kamal, K. (2015). Hybridization of simulated annealing with quenching for job shop

scheduling, Proceedings of the 2015 International Conference on Fluid Power and Mechatronics,

825-829, doi:10.1109/FPM.2015.7337228

[2] Roshanaei, V.; Balagh, A. K. G.; Esfahani, M. M. S.; Vahdani, B. (2010). A mixed-integer linear

programming model along with an electromagnetism-like algorithm for scheduling job shop

production system with sequence-dependent set-up times, International Journal of Advanced

Manufacturing Technology, Vol. 47, No. 5-8, 783-793, doi:10.1007/s00170-009-2210-9

[3] Gonzalez, M. A.; Vela, C. R.; Varela, R.; González-Rodríguez, I. (2015). An advanced scatter

search algorithm for solving job shops with sequence dependent and non-anticipatory setups, AI

Communications, Vol. 28, No. 2, 179-193, doi:10.3233/AIC-140631

https://doi.org/10.1109/FPM.2015.7337228
https://doi.org/10.1007/s00170-009-2210-9
https://doi.org/10.3233/AIC-140631

Ren, Ye, Yang: A Novel Solution to JSPs Based Long Short-Term Memory and Policy …

168

[4] Pongchairerks, P. (2019). A two-level metaheuristic algorithm for the job-shop scheduling

problem, Complexity, Vol. 2019, Paper 8683472, 11 pages, doi:10.1155/2019/8683472

[5] Foo, S. Y.-P.; Takefuji, Y. (1988). Stochastic neural networks for solving job-shop scheduling. I.

problem representation, Proceedings of the IEEE 1988 International Conference on Neural

Networks, 275-282, doi:10.1109/ICNN.1988.23939

[6] Yang, S. X.; Wang, D. W. (1999). Using constraint satisfaction adaptive neural network and

efficient heuristics for job-shop scheduling, Information and Control, Vol. 28, No. 2, 121-126,

doi:10.3969/j.issn.1002-0411.1999.02.009

[7] Jain, A. S.; Meeran, S. (1998). Job-shop scheduling using neural networks, International Journal

of Production Research, Vol. 36, No. 5, 1249-1272, doi:10.1080/002075498193309

[8] Yang, S.; Wang, D. (2000). Constraint satisfaction adaptive neural network and heuristics

combined approaches for generalized job-shop scheduling, IEEE Transactions on Neural

Networks, Vol. 11, No. 2, 474-486, doi:10.1109/72.839016

[9] Weckman, G. R.; Ganduri, C. V.; Koonce, D. A. (2008). A neural network job-shop scheduler,

Journal of Intelligent Manufacturing, Vol. 19, No. 2, 191-201, doi:10.1007/s10845-008-0073-9

[10] Silva, C.; Ribeiro, V.; Coelho, P.; Magalhães, V.; Neto, P. (2017). Job shop flow time prediction

using neural networks, Procedia Manufacturing, Vol. 11, 1767-1773, doi:10.1016/

j.promfg.2017.07.309

[11] Sutskever, I.; Vinyals, O.; Le, Q. V. (2014). Sequence to sequence learning with neural networks,

Ghahramani, Z.; Welling, M.; Cortes, C.; Lawrence, N. D.; Weinberger, K. Q. (Eds.), Advances

in Neural Information Processing Systems, Curran Associates Inc., New York, 3104-3112

[12] Fonseca, D. J.; Navaresse, D. (2002). Artificial neural networks for job shop simulation,

Advanced Engineering Informatics, Vol. 16, No. 4, 241-246, doi:10.1016/S1474-0346(03)00005-

3

[13] Mnih, V.; Badia, A. P.; Mirza, M.; Graves, A.; Harley, T.; Lillcrap, T. P.; Silver, D.;

Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning, Proceedings of

the 33rd International Conference on Machine Learning, 1928-1937

[14] Pfau, D.; Vinyals, O. (2016). Connecting generative adversarial networks and actor-critic

methods, arXiv:1610.01945 [cs.LG], NIPS Workshop on Adversarial Training, Barcelona, 10

pages

[15] Zhang, Z.; Guan, Z. L.; Zhang, J.; Xie, X. (2019). A novel job-shop scheduling strategy based on

particle swarm optimization and neural network, International Journal of Simulation Modelling,

Vol. 18, No. 4, 699-707, doi:10.2507/IJSIMM18(4)CO18

[16] Yang, Z.; Liu, C. (2018). A multi-objective genetic algorithm for a fuzzy parallel blocking flow

shop scheduling problem, Academic Journal of Manufacturing Engineering, Vol. 16, No. 2, 3-11

[17] Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness, J.; Bellemare, M. G.; Graves, A.;

Riedmiler, M.; Fidjeland, A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.; Antonoglou,

I.; King, H.; Kumaran, D.; Wierstra, D.; Legg, S.; Hassabis, D. (2015). Human-level control

through deep reinforcement learning, Nature, Vol. 518, No. 7540, 529-533,

doi:10.1038/nature14236

[18] Zhu, J.; Shao, Z. H.; Chen, C. (2019). An improved whale optimization algorithm for job-shop

scheduling based on quantum computing, International Journal of Simulation Modelling, Vol. 18,

No. 3, 521-530, doi:10.2507/IJSIMM18(3)CO13

[19] Vinyals, O.; Fortunato, M.; Jaitly, N. (2015). Pointer networks, Proceedings of the 27th

Conference Advances in Neural Information Processing Systems, 2692-2700

[20] Bahdanau, D.; Cho, K.; Bengio, Y. (2014). Neural machine translation by jointly learning to

align and translate, arXiv:1409.0473 [cs.CL], Proceedings of the 2015 International Conference

on Learning Representations, 15 pages

https://doi.org/10.1155/2019/8683472
https://doi.org/10.1109/ICNN.1988.23939
https://doi.org/10.3969/j.issn.1002-0411.1999.02.009
https://doi.org/10.1080/002075498193309
https://doi.org/10.1109/72.839016
https://doi.org/10.1007/s10845-008-0073-9
https://doi.org/10.1016/j.promfg.2017.07.309
https://doi.org/10.1016/j.promfg.2017.07.309
https://doi.org/10.1016/S1474-0346(03)00005-3
https://doi.org/10.1016/S1474-0346(03)00005-3
https://doi.org/10.2507/IJSIMM18(4)CO18
https://doi.org/10.1038/nature14236
https://doi.org/10.2507/IJSIMM18(3)CO13

