
Int j simul model 19 (2020) 2, 313-322

ISSN 1726-4529 Original scientific paper

https://doi.org/10.2507/IJSIMM19-2-CO7 313

BLOCKING FLOW SHOP SCHEDULING BASED ON HYBRID

ANT COLONY OPTIMIZATION

Shen, C. & Chen, Y. L.
#

School of Business, Shandong Agriculture and Engineering University, Jinan 250100, China

E-Mail: bgs@sdaeu.edu.cn (# Corresponding author)

Abstract

This paper attempts to solve blocking flow shop scheduling problems (BFSSPs) with the aid of swarm

intelligence. After briefly introducing the BFSSPs, two single population growth models were

compared. Between them, the logistic model was selected to derive the co-evolution model among

multiple populations. Then, a dynamic hybrid ant colony optimization (ACO) strategy was proposed

based on the competition among populations. The hybrid ACO divides the ant colony into an elite

population, k search populations and a mutant population. The three populations, with the help of a

swap local search algorithm, evolve and interact with each other interactively until the algorithm

converge to the optimal solution. The feasibility of the hybrid ACO was verified through simulations

on Taillard’s classic examples. This research provides a good reference for applying swarm

intelligence in job-shop scheduling.
(Received in November 2019, accepted in February 2020. This paper was with the authors 2 months for 1 revision.)

Key Words: Blocking Flow Shop Scheduling Problem (BFSSP), Ant Colony Optimization (ACO),

Swarm Intelligence Algorithm, Swap Local Search Algorithm

1. INTRODUCTION

Through resource allocation, the scheduling problem aims to find the optimal or near-optimal

solutions to optimize one or more aspects of the tasks. Since the 1950s, many scholars have

explored the job-shop scheduling problem (JSP), creating quite a few scheduling methods

[1, 2]. With the booming economy, however, product processing is growing in terms of scale

and complexity. The traditional methods cannot adapt to the increasingly large and complex

scheduling problems.

 This gives rise to new scheduling algorithms like swarm intelligence algorithms [3],

which fully consider the rapid growth of enterprise production. The typical examples include

genetic algorithm (GA) [4], ant colony optimization (ACO) [5], simulated annealing (SA)

algorithm [6], and particle swarm optimization (PSO) algorithm [7]. Inspired by natural

phenomena, these algorithms rely on the interaction between individuals in the swarm to

solve problems. With simple constraints and good universality, swarm intelligence algorithms

can converge to the optimal solution in a short time.

 In the basic JSP [8], a production task needs to be completed with limited resources (e.g. a

limited number of machines). To optimize the performance indices, the operations of the jobs

contained in the task and the limited resources be allocated reasonably. Mathematically, the

JSP is to model a given production task, and make the objective function value(s) optimal or

sub-optimal under specific constraints.

 This paper aims to develop an effective solver for blocking flow shop scheduling

problems (BFSSPs), an important branch of the flow shop scheduling problem (FSSP).

Firstly, the co-evolution model among multiple populations was derived from the logistic

model. Then, a hybrid ant colony optimization (ACO) strategy was proposed based on the

competition among populations, and the swap local search algorithm. The proposed strategy

was verified through simulation on Taillard’s classic examples.

https://doi.org/10.2507/IJSIMM19-2-CO7
mailto:bgs@sdaeu.edu.cn

Shen, Chen: Blocking Flow Shop Scheduling Based on Hybrid Ant Colony Optimization

314

2. LITERATURE REVIEW

The existing methods for JSPs fall into three categories: traditional methods, heuristic

methods, and swarm intelligence algorithms.

 The traditional methods solve JSPs with a mathematical model, namely, brand and bound

(BAB) method [9], Lagrange relaxation method [10], and dynamic programming [11].

Tozkapan et al. [12] used the BAB algorithm to maximize the completion time of BFSSP.

Aitzai et al. [13] combined BAB algorithm with PSO to solve the JSP under the blocking

constraint. Prins et al. [14] applied Lagrange relaxation to solve the mixed scheduling and

rescheduling of the steel-making process. Ariani et al. [15] solved the hybrid scheduling

problem through Lagrange relaxation. Bautista et al. [16] solved BFSSP through dynamic

programming. The traditional methods are generally suitable for small-scale scheduling

problems.

 The heuristic methods design the scheduling plan of jobs based on predefined rules.

Common heuristic rules [17-19] include shortest processing time (SPT) rule, earliest due date

(EDD) rule, Johnson’s rule, Campbell-Dudek-Smith (CDS) rule, Palmer’s rule, and Nawaz-

Enscore-Ham (NEH). Based on Johnson’s rule, Guinet [20] minimized the makespan of the

two-machine flow shop scheduling problem (FSSP). Wang et al. [21] proposed a flow shop

scheduling algorithm that prioritizes the jobs with the shortest total makespan on all

machines.

 Swarm intelligence algorithms are metaheuristic optimizers mimicking the behaviours of

social animals. In generally, swarm intelligence algorithms randomly initialize one or more

solutions, and then iteratively optimize the solution(s) under predefined rules, such as to

quickly converge to the optimal solution. Wang and Liu [22] developed a heuristic search GA

and applied it to hybrid FSSP. Zandieh and Karimi [23] created a hybrid GA to maximize the

completion time of FSSP. Gajpal and Rajendran [24] proposed a new ACO to minimize the

makespan of flexible JSP. Based on ACO and GA, Khalouli et al. [25] designed a hyper-

heuristic algorithm for hybrid FSSP. Zhang et al. [26] improved the PSO for dynamic flexible

JSP. Li et al. [27] designed a hybrid PSO algorithm to solve the BFSSP. Pempera et al. [28]

put forward a SA algorithm to maximize the completion time and total delay of the mixed

flow JSP. Wang et al. [29] presented a SA algorithm to minimize the makespan of the multi-

process hybrid FSSP.

3. METHODOLOGY

3.1 The BFSSP

In recent years, the BFSSP has attracted much attention, owing to its significance in

manufacturing and information services. As mentioned before, the BFSSP is an important

branch of the FSSP. Traditionally, the FSSP assumes that the buffer between two consecutive

machines has unlimited capacity. After its operation is complete on the current machine, a job

can be stored in the buffer until the next machine is available. However, there is no buffer in

many real-world scenarios, due to the requirements of the processing technology or machine

operations. The FSSP without any buffer becomes a BFSSP, in which the job, whose

operation on the current machine has completed, must remain on the current machine until the

next machine is available.

 The BFSSP can be described as follows: A total of n jobs J = {1, 2, …, n} need to be

processed in turn on m machines M = {1, 2, …, m}. There is no buffer between any two

adjacent machines. Although its operation on the current machine is complete, a job can only

wait on the current machine until the machine of the next operation is no longer occupied.

During the waiting, the current machine is occupied and cannot process the subsequent jobs.

Shen, Chen: Blocking Flow Shop Scheduling Based on Hybrid Ant Colony Optimization

315

The objective of the BFSSP is to minimize the makespan, i.e. to minimize the time before the

last job leaves the last machine by properly arranging the processing sequence of jobs on the

machines.

 Let Ti,k be the time when job i leaves machine k, Pi,k, be the processing time of job i on

machine k, and  = ((1), (2), …, (n)) be job sequence. Then, the makespan of the job

sequence  can be calculated by:

1,0 0T  (1)

1, 1, 1 1, , {1,2, , 1}k k kT T P k m     (2)

,0 1,1, {2,3, , }i iT T i n   (3)

 , , 1 , 1, 1max , {1,2, , 1} {2,3, , }i k i k i k i kT T P T k m i n         (4)

, , 1 , , {1,2, , }i m i m i mT T P i n    (5)

 The BFSSP aims to find the job sequence τ
*
 making Tmax(τ

*
)  Tmax(τ). By the above

formulas, the time of each job leaving each machine can be computed sequentially, and thus

the makespan can be obtained by Tmax(τ) = Tn,m.

3.2 Co-evolutionary algorithm based on competition among populations

Co-evolution is a biological term indicating that several species evolve together through

constant interactions. It reflects the self-adaptive features of the interactions between species.

In engineering, a complex system evolves through the co-evolution, i.e. adaptive interactions,

between its subsystems.

 Co-evolutionary algorithms, as an emerging type of evolutionary algorithms, investigate

how populations change and grow, and interact with each other. With the development of the

evolution of system theory, many co-evolutionary algorithms have been developed and

applied successfully. This subsection will focus on co-evolutionary algorithm based on

competition among populations.

 In nature, the survival and growth of populations depend on many factors, namely,

adaptability and competition among populations. Firstly, two single population growth

models are introduced below.

 (1) Malthusian model

 After analysing the law of population growth, Malthus held that population grows at a

constant rate r.

1 dN
r

N dt


 That is:

dN
rN

dt


 The solution is:
 0

0()
r t t

N t N e


 (6)

where, N0 = N(t0) is the population size at the initial time t0.

 Besides, it takes a fixed time T for the population to double itself:

0 02 rtN N e (7)

 The Malthusian model only applies to small populations. If the population is too large, the

individuals will compete for living space, causing changes to the population. Therefore, the

constant net growth rate as assumed by Malthus is not realistic, but changes with the

population size.

Shen, Chen: Blocking Flow Shop Scheduling Based on Hybrid Ant Colony Optimization

316

 (2) Logistic model

 Regarding the net growth rate of population as a function of population size, r = r(N), we

have:

()
dN

r N N
dt

 (8)

 Substituting the first term (competitive term) to the Malthusian model and assuming that

r(N) = r – aN, the differential equation can be obtained:

()
dN

r aN N
dt

  (9)

 Eq. (9) is the famous Logistic model. The linear coefficient in the model is negative,

because the competition among individuals will occur with the gradual increase in the

population size. The competition will suppress the growth rate. Eq. (9) can be rewritten as:

()
dN

K K N N
dt

  (10)

where, K is the maximum number of individuals that can be accommodated in the habitat (K

is nearly constant); N is the current number of individuals; K–N is the number of future

individuals that can be accommodated in the habitat.

 Eq. (10) shows that the population growth rate is proportional to the product of N and K–N.

This agrees with the statistical law and many experiments. Hence, this equation is also known

as the statistical calculation rate of the growth of the total number of individuals.

 Here, the co-evolution among multiple populations is discussed based on the logistic

model. Let P1 and P2 be two populations competing for the same habitat. Then, the growth

rates of the two populations can be derived from the logistic model:

1 1 21 2

1 1

1 1

2 2 12 1

2 2

2 2

1

1

dN N a N
r N

dt K K

dN N a N
r N

dt K K

  
    

  


 
   

 

 (11)

where, K1 and K2 are the environmental loads of the two populations in the absence of

competition, respectively; r1 and r2 are the maximum instantaneous growth rates of the two

populations, respectively; N1 and N2 are the sizes of the two populations, respectively; a21 and

a12 are competition factors about the inhibitory effects of the sizes of the two populations on

competition, respectively.

 From Eq. (11), the competition between n populations can be derived as:

1,

1
n

ji ji i

i i

j j ii i

a NdN N
r N

dt K K 

 
   

 
 (12)

 Eq. (12) is the so-called co-evolution algorithm based on competition among populations.

This algorithm breaks down a large population into several sub-populations that competing

and cooperating with each other at the same time.

3.3 Hybrid ACO based on co-evolution algorithm

Drawing on the co-evolutionary algorithm of competition among populations, the competitive

evolution was simulated within the same population and among different populations. The

ACO was divided into multiple co-evolutionary systems. Through the cooperation and

competition among the subsystems, the entire algorithm and its search ability constantly

evolve.

 The ant colony was split into three parts, namely, an elite population, k search populations,

and a mutant population. The elite population contains the optimal solutions in each

Shen, Chen: Blocking Flow Shop Scheduling Based on Hybrid Ant Colony Optimization

317

population, which are further optimized. The k search populations traverse the solution space,

communicate with each other and the elite population on a regular basis, and pass the optimal

solution to the elite population. The mutant population consists of the worst solutions of the

elite population and the k search populations, serving to increase the solution diversity and

minimize the number of duplicate solutions. The mutant population does not appear until the

algorithm reaches a certain number of iterations.

 The three kinds of populations evolve and interact with each other interactively until the

termination condition is reached.

 (1) The operations of the elite population

 The elite population needs to further optimize the optimal solution and sub-optimal

solution of the entire colony. The merits of ant colony system (ACS) and the maximum

minimum ant colony system (MMAS) were combined with the strength of the swap local

search algorithm. In each iteration, an optimal solution and a sub-optimal solution are selected

by swap local search, aiming to improve the solution quality.

 The state transition rules can be defined as:

  0argmax ()

()

a b

ij ij

k

ij

t n if q q
t

p t

           


 (13)

 
()

()
()

k

ij ijk k

ij

ij ij

j N

t n
p t j N

t n

 

 






      
  

      
 (14)

 To increase the randomness, the roulette selection was introduced for ant k to select the

next node from node i.

 Once all ants complete an iteration, the elite population update pheromone levels by global

pheromone update rules:

(1) (1) () (),0 1gb

ij ij ijt t t             (15)

max() 1/ ()gb

ij t T t  (16)

where, τij represents the pheromone level between node i and node j; Tmax is the optimal

solution found by all ants.

 The basic steps of the swap local search algorithm are as follows:

 Step 1. Perform swaps on the selected solution: From the first job to the last job, swap the

positions of two adjacent jobs in turn, and compute the objective function values after each

swap.

 Step 2. Save the optimal objective function value after all swaps.

 Step 3. Update the selected solution based on the optimal objective function value.

 (2) The operations of the k search populations

 The k search populations traverse the solution space, and exchange information at fixed

intervals. To speed up the convergence to high-quality solutions, each of them also exchange

information with the elite population and the mutant population. The interactions within and

outside the k search populations are detailed below:

 1) Interactions within the k search populations

 Each search population is initialized with a random size. For each search population, the

optimal solution of the previous population is passed to the next population every certain

number of iterations. Among the k search populations, the last population passes the optimal

solution to the first population. In this way, the search space of each search population is

increased, making it more likely to find the optimal solution.

 2) Interactions with the elite population

if q  q0

Shen, Chen: Blocking Flow Shop Scheduling Based on Hybrid Ant Colony Optimization

318

 After a number of iterations, each search population interacts with the elite population.

The optimal individual of the k search populations is passed to the elite population, which

returns the worst individual to the search population contributing the optimal individual.

 3) Interactions with the mutant population

 The worst individual of the k search populations and the worst individual of the elite

population are combined into a mutant population containing k+1 individuals.

 (3) The operations of the mutant population

 The mutant population mainly serves to increase the diversity of solutions. During the

optimization, the worst individual of the k search populations and that of the elite population

are dynamically grouped into a mutant population. Once the mutant population is generated,

the ant colony is reinitialized to create a new search space, thus avoiding the local optimum

trap.

 After each iteration, the mutant population interacts with the elite population, and passes

the found high-quality solution to the elite population. The elite population further optimizes

the found high-quality solution, and returns its worst individual to the mutant population.

 The mutant population is critical to the search process of the entire colony: this population

enables the algorithm to jump out of the local optimum trap, and greatly enhances the

diversity of solutions.

 (4) The basic steps of the hybrid ACO

Figure 1: The workflow of the hybrid ACO.

 As shown in Fig. 1, the hybrid ACO solves the BFFSP in the following steps:

 Step 1. Initialize one elite population and k search populations.

 Step 2. The k search populations exchange information with each other and then with the

elite population. Both types of populations are optimized through the information exchange.

Shen, Chen: Blocking Flow Shop Scheduling Based on Hybrid Ant Colony Optimization

319

 Step 3. After a certain number of iterations, the worst individual of the k search

populations and that of the elite population are combined into a mutant population.

 Step 4. In each iteration, the optimal solution of the mutant population is compared with

the optimal solution of the elite population. If it is better, the optimal solution is passed to the

elite population, while the elite population returns its worst individual to the mutant

population.

 Step 5. The three kinds of populations evolve and interact with each other interactively

until the termination condition is reached.

4. SIMULATION AND RESULTS ANALYSIS

To verify its performance in solving BFSSPs, the proposed hybrid ACO was compared with

several algorithms through simulations on Taillard's classic examples [30]. The examples

range from 5 machines with 20 jobs to 20 machines with 100 jobs.

Table I: Optimal values of the two algorithms on Taillard’s classic examples.

n×m ACO_nL Hybrid ACO

20×5 1,397 1,380

20×10 1,692 1,683

20×20 2,266 2,253

50×5 3,197 3,178

50×10 3,891 3,869

50×20 4,542 4,517

100×5 6,431 6,392

100×10 7,226 7,205

100×20 8,467 8,427

Table II: The ARPDs of the two algorithms on Taillard’s classic examples.

n×m

ACO_nL Hybrid ACO

ARPD MinRPD MaxRPD ARPD MinRPD MaxRPD

20×5 0.94 0.51 1.53 0.00 0.00 0.00

20×10 0.83 0.28 1.26 0.00 0.00 0.00

20×20 0.66 0.31 1.13 0.00 0.00 0.00

50×5 0.61 0.29 0.97 0.00 0.00 0.00

50×10 0.58 0.22 0.78 0.00 0.00 0.00

50×20 0.49 0.18 0.72 0.00 0.00 0.00

100×5 0.40 0.22 0.69 0.00 0.00 0.00

100×10 0.36 0.17 0.53 0.00 0.00 0.00

100×20 0.38 0.11 0.59 0.00 0.00 0.00

Mean 0.58 0.25 0.91 0.00 0.00 0.00

 First, the swap local search was removed from the hybrid ACO. After the removal, the

algorithm is denoted as ACO_nL. Then, the ACO_nL and the hybrid ACO were separately

applied 20 times to the mentioned examples. The minimum makespan of the 20 simulations

on each example was taken as the final result. Table I compares the final results of the two

algorithms on these examples. As shown in Table I, our hybrid ACO output better optimal

makespans on all examples than the ACO_nL. The superiority demonstrates the importance

of the swap local search.

 After that, the average relative percentage deviation (ARPD) of the optimal values

obtained by each algorithm on the examples was calculated and compared in Table II. It can

be seen that the average ARPD, average MinRPD, and average MaxRPD of the ACO_nL were

Shen, Chen: Blocking Flow Shop Scheduling Based on Hybrid Ant Colony Optimization

320

0.58, 0.25 and 0.91, while those of our hybrid ACO were all 0.00. This means our algorithm

has found the optimal values on all examples.

 Furthermore, the convergence curves of the two algorithms on example tail12 were

compared (Fig. 2). The comparison shows that our algorithm converged much faster to the

optimal value of the example, thanks to the swap local search.

Figure 2: Convergence curves of the two algorithms on example tail12.

 To sum up, our algorithm greatly outperforms the ACO_nL, highlighting the necessity of

adding the swap local search to the multi-population ACO.

 Finally, our algorithm was compared on the said examples with ACO with neighbourhood

structure (ACONS) [31] and ACO with global pheromone evaluation (ACO_GPE) [32]. The

ARPDs of the three algorithms are compared in Table III. The average ARPD, average

MinRPD, and average MaxRPD of ACONS were 1.22, 0.88 and 1.73, respectively; the

average ARPD, average MinRPD, and average MaxRPD of ACO_GPE were 1.02, 0.70 and

1.38, respectively; the average ARPD, average MinRPD, and average MaxRPD of our

algorithm were 0.00 on all examples. The above results demonstrate that our algorithm has

found the optimal values on all examples.

Table III: The ARPDs of the three algorithms on Taillard’s classic examples.

n×m
ACONS ACO_GPE Hybrid ACO

ARPD MinRPD MaxRPD ARPD MinRPD MaxRPD ARPD MinRPD MaxRPD

20×5 2.16 2.01 3.57 1.66 1.02 2.31 0.00 0.00 0.00

20×10 2.03 1.15 2.88 1.61 0.96 2.28 0.00 0.00 0.00

20×20 1.21 0.82 2.08 1.06 0.65 1.71 0.00 0.00 0.00

50×5 1.28 0.81 1.69 1.10 0.77 1.46 0.00 0.00 0.00

50×10 1.13 0.49 1.36 1.03 0.51 1.32 0.00 0.00 0.00

50×20 1.12 0.95 1.53 0.85 0.60 1.02 0.00 0.00 0.00

100×5 0.75 0.64 0.92 0.68 0.59 0.86 0.00 0.00 0.00

100×10 0.67 0.51 0.82 0.62 0.60 0.88 0.00 0.00 0.00

100×20 0.65 0.55 0.71 0.58 0.56 0.62 0.00 0.00 0.00

Mean 1.22 0.88 1.73 1.02 0.70 1.38 0.00 0.00 0.00

 The above simulation results fully testify that our algorithm can effectively solve the

BFSSPs.

5. CONCLUSIONS

Based on competition among populations, this paper proposes a dynamic hybrid ACO for the

BFSSP. The proposed algorithm divides the ant colony into an elite population, k search

populations, and a mutant population. Initially, there are only an elite population and k

Shen, Chen: Blocking Flow Shop Scheduling Based on Hybrid Ant Colony Optimization

321

search populations. During the iterations, information is exchanged among the search

populations, and between them and the elite population. To further improve the optimal

solution, the elite population generates an optimal solution and a suboptimal solution in each

iteration by the swap local search algorithm. Using Taillard’s classic examples, the proposed

algorithm was proved effective in solving the BFSSPs through repeated simulations.

REFERENCES

[1] Lopez, L.; Carter, M. W.; Gendreau, M. (1998). The hot strip mill production scheduling problem:

a tabu search approach, European Journal of Operational Research, Vol. 106, No. 2-3, 317-335,

doi:10.1016/S0377-2217(97)00277-4

[2] Zhu, J.; Shao, Z. H.; Chen, C. (2019). An improved whale optimization algorithm for job-shop

scheduling based on quantum computing, International Journal of Simulation Modelling, Vol. 18,

No. 3, 521-530, doi:10.2507/IJSIMM18(3)CO13

[3] Kim, J. B. (2019). Implementation of artificial intelligence system and traditional system: a

comparative study, Journal of System and Management Sciences, Vol. 9, No. 3, 135-146

[4] Özdemir, H.; Sever, R.; Polat, Ö. (2019). GA-based optimization of SURF algorithm and

realization based on Vivado-HLS, Traitement du Signal, Vol. 36, No. 5, 377-382,

doi:10.18280/ts.360501

[5] Subekti, R.; Sari, E. R.; Kusumawati, R. (2018). Ant colony algorithm for clustering in portfolio

optimization, Journal of Physics: Conference Series, Vol. 983, No. 1, Paper 012096, 6 pages,

doi:10.1088/1742-6596/983/1/012096

[6] Selim, S. Z.; Alsultan, K. (1991). A simulated annealing algorithm for the clustering problem,

Pattern Recognition, Vol. 24, No. 10, 1003-1008, doi:10.1016/0031-3203(91)90097-O

[7] Yang, L. L. (2019). An attitude motion planning algorithm for one-legged hopping robot based

on spline approximation and particle swarm optimization, Revue d'Intelligence Artificielle, Vol.

33, No. 1, 49-52, doi:10.18280/ria.330109

[8] Shafaei, R.; Brunn, P. (1999). Workshop scheduling using practical (inaccurate) data Part 2: an

investigation of the robustness of scheduling rules in a dynamic and stochastic environment,

International Journal of Production Research, Vol. 37, No. 18, 4105-4117, doi:10.1080/

002075499189682

[9] Norkin, V. I.; Pflug, G. C.; Andrzej, R. (1998). A branch and bound method for stochastic global

optimization, Mathematical Programming, Vol. 83, No. 1-3, 425-450, doi:10.1007/BF02680569

[10] Li, S. Z.; Soh, W. Y. C.; Teoh, E. K. (1998). Relaxation labeling using augmented Lagrange-

Hopfield method, Pattern Recognition, Vol. 31, No. 1, 73-81, doi:10.1016/S0031-3203(97)00024-1

[11] Chen, H.; Chu, C.; Proth, J.-M. (1998). An improvement of the Lagrangean relaxation approach

for job shop scheduling: a dynamic programming method, IEEE Transactions on Robotics and

Automation, Vol. 14, No. 5, 786-795, doi:10.1109/70.720354

[12] Tozkapan, A.; Kirca, O.; Chung, C.-S. (2003). A branch and bound algorithm to minimize the

total weighted flowtime for the two-stage assembly scheduling problem, Computers &

Operations Research, Vol. 30, No. 2, 309-320, doi:10.1016/S0305-0548(01)00098-3

[13] Aitzai, A.; Benmedjdoub, B.; Boudhar, M. (2016). Branch-and-bound and PSO algorithms for

no-wait job shop scheduling, Journal of Intelligent Manufacturing, Vol. 27, No. 3, 679-688,

doi:10.1007/s10845-014-0906-7

[14] Prins, C.; Prodhon, C.; Calvo, R. W. (2006). Two-phase method and Lagrangian relaxation to

solve the bi-objective set covering problem, Annals of Operations Research, Vol. 147, No. 1, 23-

41, doi:10.1007/s10479-006-0060-5

[15] Arani, T.; Karwan, M.; Lofti, V. (1988). A Lagrangian relaxation approach to solve the second

phase of the exam scheduling problem, European Journal of Operational Research, Vol. 34, No.

3, 372-383, doi:10.1016/0377-2217(88)90158-0

[16] Bautista, J.; Cano, A.; Companys, R.; Ribas, I. (2012). Solving the Fm∣block∣Cmax problem using

bounded dynamic programming, Engineering Applications of Artificial Intelligence, Vol. 25, No.

6, 1235-1245, doi:10.1016/j.engappai.2011.09.001

https://doi.org/10.1016/S0377-2217(97)00277-4
https://doi.org/10.2507/IJSIMM18(3)CO13
https://doi.org/10.18280/ts.360501
https://doi.org/10.1088/1742-6596/983/1/012096
https://doi.org/10.1016/0031-3203(91)90097-O
https://doi.org/10.18280/ria.330109
https://doi.org/10.1080/002075499189682
https://doi.org/10.1080/002075499189682
https://doi.org/10.1007/BF02680569
https://doi.org/10.1016/S0031-3203(97)00024-1
https://doi.org/10.1109/70.720354
https://doi.org/10.1016/S0305-0548(01)00098-3
https://doi.org/10.1007/s10845-014-0906-7
https://doi.org/10.1007/s10479-006-0060-5
https://doi.org/10.1016/0377-2217(88)90158-0
https://doi.org/10.1016/j.engappai.2011.09.001

Shen, Chen: Blocking Flow Shop Scheduling Based on Hybrid Ant Colony Optimization

322

[17] Ye, N.; Yang, Z.; Lai, Y.-C.; Farley, T. (2005). Enhancing router QoS through job scheduling

with weighted shortest processing time-adjusted, Computers & Operations Research, Vol. 32, No.

9, 2255-2269, doi:10.1016/j.cor.2004.03.001

[18] Bin, S.; Sun, G.; Cao, N.; Qiu, J.; Zheng, Z.; Yang, G.; Zhao, H.; Jiang, M.; Xu, L. (2019).

Collaborative filtering recommendation algorithm based on multi-relationship social network,

CMC-Computers, Materials & Continua, Vol. 60, No. 2, 659-674, doi:10.32604/cmc.2019.05858

[19] Kurniawati, D. A.; Nugroho, Y. I. (2017). Computational study of n-job m-machine flow shop

scheduling problems: SPT, EDD, NEH, NEH-EDD, and modified-NEH algorithms, Journal of

Advanced Manufacturing Systems, Vol. 16, No. 4, 375-384, doi:10.1142/S0219686717500226

[20] Guinet, A. (2000). Efficiency of reductions of job-shop to flow-shop problems, European

Journal of Operational Research, Vol. 125, No. 3, 469-485, doi:10.1016/S0377-2217(99)00389-6

[21] Wang, K.; Choi, S. H.; Qin, H.; Huang, Y. (2013). A cluster-based scheduling model using SPT

and SA for dynamic hybrid flow shop problems, International Journal of Advanced

Manufacturing Technology, Vol. 67, No. 9-12, 2243-2258, doi:10.1007/s00170-012-4645-7

[22] Wang, S.; Liu, M. (2013). A genetic algorithm for two-stage no-wait hybrid flow shop

scheduling problem, Computers & Operations Research, Vol. 40, No. 4, 1064-1075,

doi:10.1016/j.cor.2012.10.015

[23] Zandieh, M.; Karimi, N. (2011). An adaptive multi-population genetic algorithm to solve the

multi-objective group scheduling problem in hybrid flexible flowshop with sequence-dependent

setup times, Journal of Intelligent Manufacturing, Vol. 22, No. 6, 979-989, doi:10.1007/s10845-

009-0374-7

[24] Gajpal, Y.; Rajendran, C. (2006). An ant-colony optimization algorithm for minimizing the

completion-time variance of jobs in flowshops, International Journal of Production Economics,

Vol. 101, No. 2, 259-272, doi:10.1016/j.ijpe.2005.01.003

[25] Khalouli, S.; Ghedjati, F.; Hamzaoui, A. (2011). An ant colony system algorithm for the hybrid

flow-shop scheduling problem, International Journal of Applied Metaheuristic Computing, Vol.

2, No. 1, 29-43, doi:10.4018/jamc.2011010103

[26] Zhang, J.; Wang, W.-L.; Xu, X.-L.; Wang, H.-Y. (2012). Improved particle swarm algorithm for

batch splitting flexible job shop scheduling, Control and Decision, Vol. 2012, No. 4, 513-518

[27] Li, J.-Q.; Pan, Q.-K.; Liang, Y.-C. (2010). An effective hybrid tabu search algorithm for multi-

objective flexible job-shop scheduling problems, Computers & Industrial Engineering, Vol. 59,

No. 4, 647-662, doi:10.1016/j.cie.2010.07.014

[28] Pempera, J.; Smutnicki, C.; Zelazny, D. (2013). Optimizing bicriteria flow shop scheduling

problem by simulated annealing algorithm, Procedia Computer Science, Vol. 18, 936-945,

doi:10.1016/j.procs.2013.05.259

[29] Wang, H.-M.; Chou, F.-D.; Wu, F.-C. (2011). A simulated annealing for hybrid flow shop

scheduling with multiprocessor tasks to minimize makespan, The International Journal of

Advanced Manufacturing Technology, Vol. 53, No. 5-8, 761-776, doi:10.1007/s00170-010-2868-z

[30] Sun, G.; Bin, S. (2017). Router-level internet topology evolution model based on multi-subnet

composited complex network model, Journal of Internet Technology, Vol. 18, No. 6, 1275-1283,

doi:10.6138/JIT.2017.18.6.20140617

[31] Blum, C.; Sampels, M. (2004). An ant colony optimization algorithm for shop scheduling

problems, Journal of Mathematical Modelling and Algorithms, Vol. 3, No. 3, 285-308,

doi:10.1023/B:JMMA.0000038614.39977.6f

[32] Merkle, D.; Middendorf, M. (2003). Ant colony optimization with global pheromone evaluation

for scheduling a single machine, Applied Intelligence, Vol. 18, No. 1, 105-111,

doi:10.1023/A:1020999407672

https://doi.org/10.1016/j.cor.2004.03.001
https://doi.org/10.32604/cmc.2019.05858
https://doi.org/10.1142/S0219686717500226
https://doi.org/10.1016/S0377-2217(99)00389-6
https://doi.org/10.1007/s00170-012-4645-7
https://doi.org/10.1016/j.cor.2012.10.015
https://doi.org/10.1007/s10845-009-0374-7
https://doi.org/10.1007/s10845-009-0374-7
https://doi.org/10.1016/j.ijpe.2005.01.003
https://doi.org/10.4018/jamc.2011010103
https://doi.org/10.1016/j.cie.2010.07.014
https://doi.org/10.1016/j.procs.2013.05.259
https://doi.org/10.1007/s00170-010-2868-z
https://doi.org/10.6138/JIT.2017.18.6.20140617
https://doi.org/10.1023/B:JMMA.0000038614.39977.6f
https://doi.org/10.1023/A:1020999407672

