
Int j simul model 19 (2020) 2, 323-333 

ISSN 1726-4529                                                                                   Original scientific paper 

https://doi.org/10.2507/IJSIMM19-2-CO8 323 

 

CONSTRUCTION AND SIMULATION OF MULTI-OBJECTIVE 

RESCHEDULING MODEL BASED ON PSO 

Li, J. X.
#
 & Wen, X. N. 

School of Economics and Management, Xidian University, Xi’an 710126, China 

E-Mail: lijunxia@stu.xidian.edu.cn (# Corresponding author) 

Abstract 

Job-shop scheduling is critical to the normal operation of the production process. However, there is 

not yet a robust rescheduling strategy for dynamic job-shop scheduling problems (DJSPs), which is 

disturbed by multiple random dynamic events. To make up for the gap, this paper classifies dynamic 

events by scheduling strategies, and details the hypotheses and constraints of dynamic job-shop 

scheduling. Then, a multi-objective rescheduling model was established to minimize the maximum 

completion time and maximum machine load of DJSPs. The model was solved by the particle swarm 

optimization (PSO). Finally, our model was proved effective and robust through MATLAB 

simulations. The research results provide a reference for the application of swarm intelligence in the 

field of the JSP. 
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1. INTRODUCTION 

In the manufacturing industry, job-shop scheduling, an important aspect of the production 

plan, guarantees the normal operation of the production process. However, not all scheduling 

plans can satisfy the production demand. Therefore, the optimization of the scheduling plan 

becomes the key issue of the job-shop scheduling problem (JSP). 

      To make matters worse, the production environment is disturbed by various factors, such 

as emergency insertion of orders, early delivery of products, and machine failure. The original 

scheduling plan cannot automatically adapt to the disturbed environment. This calls for 

dynamic scheduling that handles dynamic events in time and reduces their impacts on the 

production process. 

      The JSP is widely regarded as non-deterministic polynomial-time (NP) hard. Currently, 

NP-hard problems are mainly resolved through exact solution and approximate solution [1]. 

Exact solution methods, namely, branch and bound (BB) method [2] and mathematical 

programming [3], only apply to small-scale scheduling problems, because of their high time 

consumption. Approximate solution methods, namely, artificial intelligence (AI) and 

neighbourhood search [4], can effectively solve large-scale JSPs in a fast and convenient 

manner. 

      The JSPs usually deal with the scheduling of multiple jobs on the same machine.  

Considering machine assignment and operation sequence, the JSP can be extended into the 

flexible JSP (FJSP), in which the same process consumes different time on different machines, 

and the same machine takes different time to process different operations. 

      Taking uncertain factors into account, the dynamic JSP (DJSP), a special form of the FJSP, 

is more in line with the actual production environment. The uncertain factors may occur at 

any time during the production process, exerting a huge impact on the processing of jobs. 

      This paper aims to develop a robust and feasible rescheduling model for DJSPs with 

multiple objectives. For this purpose, the dynamic events that may occur in job-shops were 

classified into three categories. Based on each type of events, the hypotheses, constraints, and 
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objectives of dynamic job-shop scheduling were discussed in details. Next, our rescheduling 

model was established with the goal to minimize the maximum completion time and 

maximum machine load. The established model was solved by the particle swarm 

optimization (PSO) and verified through MATLAB simulation. 

2. LITERATURE REVIEW 

2.1  The PSO 

The common approaches to solve the JSP include swarm intelligence algorithms, neutral 

networks (NNs), genetic algorithm (GA), simulated annealing (SA) algorithm, and tabu 

search (TS). Among them, the PSO [5], a typical swarm intelligence algorithm, has been 

widely applied in the JSPs, for its fast convergence, good robustness, and ease of 

implementation. But the traditional PSO is not suitable for all kinds of JSPs. Thus, many 

attempts have been made to optimize this algorithm. 

      Yeh et al. [6] encoded particles in the PSO with binary coding, creating a continuous PSO 

for discrete problems. Li et al. [7] obtained an integer by iteratively adjusting the position 

vector of particles, which facilitates the solving of the FJSP. Bu [8] added chaotic disturbance 

to individual optimal particle to prevent its position from converging, so that the particle can 

search around the neighbourhood of the global optimal solution. Wong and Ngan [9] 

effectively solved the FJSP through combining the PSO and the GA. 

      To prevent the PSO from the local optimum trap, Ohmi and Panday [10] updated particles 

by the crossover and mutation of the GA, and searched for the optimal solution by the SA 

algorithm. Mekhmoukh and Mokrani [11] introduced spatial neighbourhood to the PSO, 

converted particles in the same spatial neighbourhood into a sub-swarm, and changed the 

threshold dynamically as per the evolution results, thereby ensuring the diversity of the swarm. 

To increase population diversity, Marinakis and Marinaki [12] adjusted the dynamic selection 

of neighbourhood based on neighbourhood topology, and bolstered the information exchange 

between neighbourhoods through social belief. 

2.2  Multi-objective DJSP 

For a multi-objective DJSP, it is necessary to optimize every object at the same time. Cruz-

Chávez et al. [13] improved the SA algorithm, and coupled the improved algorithm with the 

idea of the TS, aiming to minimize the delivery time of the FJSP. Zhang et al. [14] combined 

global search, local search, and random generation into an initialization method to generate a 

high-quality initial population for the FJSP with three objectives, namely, minimum 

maximum machine load, machine load balance, and minimum completion time. Qi et al. [15] 

improved the PSO based on the SA algorithm and Baldwinian learning strategy, and applied 

the improved algorithm to solve the FJSP with the aims to minimize the completion time, 

maximum machine load, and maximum load of a single machine. 

      To realize sustainable, intelligent, and green manufacturing, Zhang et al. [16] proposed a 

new rescheduling method based on the PSO, which minimizes the completion time and global 

consumption for machine failure. Agrawal et al. [17] evaluated the risk of rescheduling 

through analytic approach, and minimized the rescheduling risk by the GA, ensuring the 

stability of the maximum completion time. Wu et al. [18] developed a detailed mathematical 

model and processing steps for new added jobs, and solved the multi-objective DJSP with an 

improved GA. Targeting the JSP constrained by delivery bottleneck, Zuo et al. [19] 

constructed a scheduling model to deliver products satisfactorily under the constraint, and 

solved the model with an improved PSO. 
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2.3  Dynamic events 

Some scholars have tried to optimize the scheduling plan faced with several dynamic events. 

For example, Wen et al. [20] improved the variable neighbourhood search algorithm to 

optimize the scheduling plan under the insertion of random jobs and machine failure. Yolmeh 

and Kianfar [21] designed an efficient hybrid GA to solve three dynamic events, including 

insertion of random jobs, machine failure, and the change of processing time, and proved the 

advantages of the algorithm in solution quality and runtime. 

3. MULTI-OBJECTIVE DYNAMIC JOB-SHOP SCHEDULING MODEL 

3.1  Classification of dynamic events 

Dynamic events can be classified according to the key information in the JSP, such as jobs, 

machines, and operations. Here, dynamic events are categorized by scheduling strategies, 

because this research aims to find the suitable strategies to schedule various dynamic events. 
 

 

Figure 1: Classification of dynamic events. 

      As shown in Fig. 1, new added events add jobs to the processing sequence, including 

emergency orders, substandard jobs, and obsolete jobs. Each emergency order may include 

one or more jobs. In occupation events, the machine is occupied for some reason and cannot 

process jobs. A failed machine, whether repaired or not, is regarded as occupied. Delayed 

events mainly refer to material delays. A delayed event can be understood as a “time” 

occupation event, i.e. the delayed time is occupied and cannot be used to process jobs. 

3.2  Dynamic job-shop scheduling model 

Once dynamic events occur, three scheduling strategies are available: event-driven 

rescheduling, periodic rescheduling, and hybrid rescheduling. In event-driven rescheduling, 

the system makes immediate response and rescheduling upon detecting dynamic events; in 

periodic rescheduling, the system performs rescheduling at regular intervals, whether dynamic 

events occur or not; in hybrid rescheduling, the system performs rescheduling at regular 

intervals, while continuously detecting dynamic events and solving the detected events right 

away. Therefore, hybrid rescheduling is a combination of the former two scheduling strategies. 

This paper adopts event-based rescheduling to solve the DJSP with dynamic events, and 

adjusts the rescheduling plan according to the specific event. 

      Rescheduling strategies can be divided into postponement rescheduling, insertion 

rescheduling, and complete rescheduling. The postponement rescheduling deals with special 
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problems like newly added orders. The operations in the new order are arranged directly after 

the current operation sequence [22], without affecting the sequence of other operations. 

However, insertion rescheduling and complete rescheduling both will affect the results of the 

original scheduling plan. 

      Insertion rescheduling is to insert unprocessed operations into the scheduled results 

without affecting other operations. The unprocessed operations must to meet the basic 

constraints of the JSP. In addition, the idle time of the selected machine must be longer than 

or equal to the processing time of the inserted operations. Thus, insertion rescheduling only 

applies to a few cases, although it does not affect the other operations. This strategy is more 

suitable for adding new simple operations that can be processed in a short time. 

      Complete rescheduling generates completely new results by rescheduling all unprocessed 

operations, including the operations of new tasks and unprocessed operations of the original 

tasks. The operation sequence and completion time of the original schedule will be 

completely changed. This strategy only needs to satisfy the basic constraints of the JSP. 

      Since the DJSP is a special case of FJSP, the first step of modelling dynamic job-shop 

scheduling is to develop a model of flexible scheduling, and then adjust some of the 

constraints. Before transforming the FJSP into a mathematical problem, the following 

hypotheses were presented to approximate the actual production environment, and simplify 

the modelling process: 

      H1:  The operation sequence of any job must meet the operation constraints; 

      H2:  The sequence of different jobs is not considered; 

      H3:  All machines are available at the beginning; 

      H4:  The processing time of each job is fixed on any machine; 

      H5:  Once an operation is processed, the processing cannot be interrupted unless the 

machine becomes unavailable; 

      H6:  The loading/unloading time and transport time of any job are neglected. 

      The DJSP in our research faces the following constraints: 
 

      (1) Machine constraints 

      The set of machines available for each operation is predetermined, and a subset of the 

total set of machines: 

𝑌𝑖𝑗 ⊆ {𝑚1, 𝑚2, … , 𝑚𝑀} (1) 

where, 𝑌𝑖𝑗 is the set of machines available for operation 𝑂𝑖𝑗. 

      The processing time of each operation on any machine should not be negative nor infinite: 

0 < 𝑝𝑖𝑗𝑚 < ∞, 𝑖 = 1, 2, … , 𝑁, 𝑗 = 1, 2, … , 𝑛, 𝑚 = 1, 2, … , 𝑀 (2) 

where, 𝑝𝑖𝑗𝑚 is the processing time of the 𝑗th
 operation of the 𝑖th

 job on machine m. 

      The same operation can only be processed on one machine at a time. In other words, an 

operation is unprocessed, processed or being processed. The unprocessed state and being 

processed state can be respectively expressed as: 

∑ 𝑋𝑖𝑗𝑚

𝑀

𝑚=1

= 0, 𝑖 = 1, 2, … , 𝑁, 𝑗 = 1, 2, … , 𝑛 (3) 

∑ 𝑋𝑖𝑗𝑚

𝑀

𝑚=1

= 1, 𝑖 = 1, 2, … , 𝑁, 𝑗 = 1, 2, … , 𝑛 (4) 

where, 𝑋𝑖𝑗𝑚 is an indicator of whether operation 𝑂𝑖𝑗  is processed on machine m. 

      Each machine can only process one job at a time: 



Li, Wen: Construction and Simulation of Multi-Objective Rescheduling Model Based on PSO 

327 

∑ ∑ 𝑋𝑖𝑗𝑚

𝑛

𝑗=1

𝑁

𝑖=1

= 1, 𝑚 = 1, 2, … , 𝑁 (5) 

      (2) Time constraints 

      The first operation of any job should be started at or after time zero: 

𝑠𝑖1 ≥ 0, 𝑖 = 1, 2, … , 𝑁 (6) 

where, 𝑠𝑖1 is the start time of the first operation of the 𝑖th
 job. 

      The start time of operation  𝑂𝑖𝑗  on machine m should be right after or later than its 

previous operation 𝑂𝑖(𝑗−1), and right after or later than the completion time of the previous 

operation 𝑂𝑎𝑏 of the machine m. Hence, the start time of the 𝑗th
 operation of the 𝑖th

 job on 

machine m must satisfy: 

𝑠𝑖𝑗𝑚 = max {𝑐𝑖(𝑗−1)𝑘 , 𝑐𝑎𝑏𝑚} (7) 

where, 𝑐𝑖(𝑗−1)𝑘 is the completion time of the (𝑗 − 1)th
 operation of the 𝑖th

 job on machine 𝑘: 

𝑐𝑖(𝑗−1)𝑘 = 𝑠𝑖(𝑗−1)𝑘 + 𝑝𝑖(𝑗−1)𝑘 (8) 

where, 𝑝𝑖(𝑗−1)𝑘 is the processing time of the (𝑗 − 1)th
 operation of the 𝑖th

 job on machine 

𝑘 . Then, the completion time of the previous operation 𝑂𝑎𝑏  of the machine m can be 

expressed as: 

𝑐𝑎𝑏𝑚 = 𝑠𝑎𝑏𝑚 + 𝑝𝑎𝑏𝑚 (9) 

      Dynamic events occur randomly in time. At the time of occurrence, static scheduling has 

been completed and processing has begun: 

0 < 𝑑𝑦𝑡 < 𝑓1 (10) 

where, 𝑓1 is the performance index of maximum completion time. 

      In this paper, the minimization of the maximum completion time and the maximum 

machine load are selected as the optimization objectives. Then, the objective model of static 

scheduling was constructed. After that, the objectives of dynamic scheduling were adjusted 

according to the occurrence of each kind of dynamic events. 

      Completion time refers to the duration from time zero of processing to the completion of 

all operations in all jobs. Let 𝑝𝑖𝑗𝑚 be the processing time of operation 𝑂𝑖𝑗 on machine m, and 

𝑋𝑖𝑗𝑚 be the indicator of whether operation 𝑂𝑖𝑗 is processed on machine m. For the 𝑖th
 job, its 

completion time 𝑐𝑖 can be obtained by traversing all machines and operations. Our scheduling 

strategy aims to minimize the maximum completion time of N jobs. This optimization 

objective and the completion time of each job can be respectively expressed as: 

𝑓1 = 𝑚𝑖𝑛 {𝑚𝑎𝑥𝑐𝑖}, 𝑖 = 1, 2, … , 𝑁 (11) 

𝑐𝑖 = ∑ ∑ 𝑝𝑖𝑗𝑚

𝑛

𝑗=1

× 𝑋𝑖𝑗𝑚

𝑀

𝑚=1

 (12) 

      The total processing time of a single machine after all operations in all jobs are completed 

is known as single machine load. For machine m, its machine load, i.e. the total processing 

time, can be obtained by traversing all operations in all jobs. Hence, the minimization of the 

maximum machine load can be described as: 

𝑓2 = 𝑚𝑖𝑛 {𝑚𝑎𝑥 ∑ ∑ 𝑝𝑖𝑗𝑚

𝑛

𝑗=1

× 𝑋𝑖𝑗𝑚

𝑀

𝑚=1

} , 𝑚 = 1, 2, … , 𝑀 (13) 
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4. SOLVING ALGORITHM 

4.1  Overview of the PSO 

The PSO is an important swarm intelligence algorithm inspired by the foraging behaviours of 

birds [23, 24]. Initially, the position and flight direction of each bird are random, but the birds 

will continuously search for the food source through information sharing. 

      When applied to an optimization problem, the PSO initializes a swarm of particles 

(solutions) within its feasible solution space, and evaluates the quality of each particle based 

on fitness. Each particle has two attributes: velocity and position. The former determines the 

direction and distance of particle movement. 

      During iterative searches, each particle updates its velocity and position based on the best-

known individual solution 𝑝𝑏𝑒𝑠𝑡 and the best-known global solution 𝑔𝑏𝑒𝑠𝑡. In each iteration, 

the particle recalculates its fitness after updating its velocity and position. Then, the fitness 

values of the particle were compared to update the  𝑝𝑏𝑒𝑠𝑡 , and the fitness values of all 

particles in the swarm were compared to update the 𝑔𝑏𝑒𝑠𝑡. 

      The velocity and position of each particle can be respectively updated by: 

𝑣𝑖+1 = 𝜔𝑣𝑡 + 𝐶1𝑟1(𝑃𝑡 − 𝑥𝑡) + 𝐶2𝑟2(𝐺𝑡 − 𝑥𝑡) (14) 

𝑥𝑡+1 = 𝑥𝑡 + 𝑣𝑡+1 (15) 

where, 𝜔 is the inertia weight; 𝐶1 and 𝐶2 are learning factors; 𝑟1 and 𝑟2 are random numbers 

in the interval of [0, 1]. The specific meaning of each parameter is explained as follows: 

      Inertia weight 𝜔 controls the influence of the velocity at the previous moment on the 

velocity at the current moment, i.e. the ability of particle to expand the search space. The 

value of 𝜔 is positively correlated with the global search ability, and negatively with the local 

search ability. 

      Learning factors 𝐶1  and  𝐶2  adjust the weights of self-learning and group learning of 

particles. The expansion of search space is controlled by the two factors. The value of each 

learning factor is positively correlated with the difference between the velocity at the previous 

moment on the velocity at the current moment. If 𝐶1 = 𝐶2 = 0, then the particle will move at 

the initial velocity and direction until reaching the boundary of the feasible solution space, 

which reduces the probability of finding the optimal solution. The values of both learning 

factors are usually set to 2. 

      Random numbers 𝑟1 and 𝑟2 add random disturbances to particles. The randomized particle 

movements help to expand the search space. 

      The standard PSO is implemented in the following steps: 

      Step 1:  Input the relevant parameters; 

      Step 2:  Randomly initialize the swarm; 

      Step 3:  Calculate the fitness of each particle; 

      Step 4: Compare the fitness values of all particles to obtain the best-known global solution; 

      Step 5:  Judge if the maximum number of iterations is reached; if yes, terminate the 

optimization and output the result; otherwise, go to Step 6; 

      Step 6:  Update the velocity and position of each particle; 

      Step 7:  Calculate the fitness and update the best-known solution of each particle; 

      Step 8:  Update the best-known global solution and go to Step 5. 

4.2  Solving multi-objective dynamic job-shop scheduling with PSO 

To solve our model with the PSO, the first step is to encode the feasible solutions. Here, every 

feasible solution is encoded by a common two-layer coding strategy based on both operation 

and machine. The coding of a feasible solution is illustrated in Fig. 2 below. 
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Figure 2: The structure of two-layer coding. 

      The operation-based coding encodes each operation of a job with the serial number of the 

job, and the serial number of the operation in the operation sequence of the job. In Fig. 2, the 

first digit 2 indicates that operation 𝑂21 is the first operation of the 2
nd

 job; the second, sixth 

and ninth digits indicate that the corresponding operations belong to the 1
st
 job. 

      The machine-based coding adds the serial number of each machine to the operation-based 

code of the corresponding operation. The length of machine-based code is the same as the 

operation-based code. In Fig. 2, the first bit 3 indicates that operation 𝑂21 is processed on 

the machine 3; the third bit 1 indicates that operation 𝑂31 is processed on machine 1. 

      During decoding, the encoding procedure was reversed. When the machine-based code 

was decoded, the processing would be infeasible if the processing time of the current 

operation on the machine was negative, zero or greater than 1,000. In this case, the code was 

modified by randomly selecting another machine from the set of available machines. 

      The PSO parameters were defined and configured as follows: 

      Swarm size S𝑖𝑧𝑒: 

      This parameter directly bears on the search ability and computing load. For general 

problems, the swarm size should be set within [20, 40] to obtain a good solution. For difficult 

problems, the swarm size should be properly expanded. 

      Maximum number of iterations 𝑇𝑚𝑎𝑥: 

      This parameter should be adjusted in the light of the problem scale. If 𝑇𝑚𝑎𝑥 is too small, 

the PSO will terminate without finding the optimal solution; if 𝑇𝑚𝑎𝑥  is too large, the 

extremums will remain unchanged after the algorithm converges to the optimal solution, 

causing a great waste of resources. 

      Maximum velocity 𝑉𝑚𝑎𝑥: 

      This parameter represents the maximum distance that each particle moves in the iterative 

process, and controls the search and expansion abilities of the algorithm. If 𝑉𝑚𝑎𝑥 is too large, 

particles may fly over the optimal solution or even beyond the feasible search space; if 𝑉𝑚𝑎𝑥 is 

too small, the particles will stuck in the local area, so that the algorithm falls into the local 

optimum trap. In general, the maximum velocity is controlled between -2 and 2. 

      Inertia weight 𝜔: 

      This parameter reflects how much the current velocity of each particle is affected by the 

velocity at the previous moment. The inertia weight is often set to decrease linearly from 0.8 

to 0.4. 

      Learning factors 𝐶1 and 𝐶2: 

      As mention before, the two parameters are generally set to 2. 

      The velocity and position of each particle was updated iteratively by Eqs. (14) and (15), 

respectively. In the velocity update formula, the first part 𝜔𝑣𝑡  is the self-cognition part, 

meaning that the particle is affected by the current velocity; the second part 𝐶1𝑟1(𝑃𝑡 − 𝑥𝑡) is 

the self-learning part, meaning that the particle will be affected by its optimal position; the 

third part 𝐶2𝑟2(𝐺𝑡 − 𝑥𝑡) is the group learning part, meaning that the particles will be affected 

by the swarm. In each part, the parameters reflect the degree of influence by that part. For 



Li, Wen: Construction and Simulation of Multi-Objective Rescheduling Model Based on PSO 

330 

example, if the self-learning factor 𝐶1 = 0, the particles all fly to the global optimal position, 

making it easy to fall into local optimum. If the group-learning factor 𝐶2 = 0, the lack of 

information sharing will slow down the convergence. 

      The PSO can be terminated under two conditions: the pre-set fitness is realized, or the 

maximum number of iterations is reached. In JSPs, the position and value of the optimal 

solution are unknown. Therefore, the termination condition of maximum number of iterations 

was adopted. 

5. SIMULATION VERIFICATION 

To verify its feasibility, our rescheduling strategy was tested through MATLAB simulation of 

JSPs in different scales, using benchmark examples of a 3×3 complete FJSP and a 5×6 partial 

FJSP. 

      The selected datasets were verified separately for each kind of dynamic events. The FJSPs 

with at most two machines available for each operation were found not suitable for machine 

failure simulation. 

      Concerning period of dynamic events, the time close to the initial time of processing is 

almost similar to the occurrence of the dynamic event, and the time close to the end of 

processing is rescheduled. Therefore, there is no room for rescheduling after the occurrence of 

dynamic events. As a result, 25
 
%-75

 
% of the total processing time of each FJSP was selected 

as the period for dynamic event occurrence. 

      In addition, the occurrence time of dynamic events was divided into two periods for 

simulation. The impacts of rescheduling results on the original scheduling were compared to 

reveal the robustness of the rescheduling strategy when dynamic events occur in different 

periods. 

      The swarm size and the maximum number of iterations were set according to the problem 

scale (Table I). 

Table I: Parameter settings. 

Problem 𝑺𝒊𝒛𝒆 𝑻𝒎𝒂𝒙 

Complete FJSP 4 10 

Partial FJSP 20 20 

      The 3×3 complete FJSP was simulated first, and the results are shown in Table II. 

Table II: Simulation results of the complete FJSP. 

Jobs Operations 
Optional machines and processing time 

𝑴𝟏                           𝑴𝟐                            𝑴𝟑 

 𝑂11 4 2 3 

𝑱𝟏 𝑂12 3 2 5 

 𝑂13 2 4 6 

 𝑂21 3 5 2 

𝑱𝟐 𝑂22 5 3 4 

 𝑂23 2 3 5 

 𝑂31 6 4 5 

𝑱𝟑 𝑂32 3 4 5 

 𝑂33 4 3 5 

 

 



Li, Wen: Construction and Simulation of Multi-Objective Rescheduling Model Based on PSO 

331 

Table III: Processing schedule of the 4th job on each machine. 

Job Operation 
Optional machine and processing time 

 𝑴𝟏                             𝑴𝟐                          𝑴𝟑 

 𝑂41 5 4 5 

𝑱𝟒 𝑂42 3 4 6 

 𝑂43 4 4 6 

Table IV: Simulation results of the partial FJSP. 

Jobs Operations 
Optional machines and processing time 

 𝑴𝟏  𝑴𝟐  𝑴𝟑  𝑴𝟒  𝑴𝟓  𝑴𝟔 

𝐽1 

𝑂11 3 2 5 ▬ 3 ▬ 

𝑂12 ▬ 2 3 2 ▬ ▬ 

𝑂13 2 3 ▬ ▬ 5 ▬ 

𝑂14 3 ▬ ▬ 4 6 ▬ 

𝑂15 ▬ 5 ▬ 7 5 8 

𝐽2 

𝑂21 3 ▬ 4 ▬ 3 ▬ 

𝑂22 5 3 ▬ 5 4 ▬ 

𝑂23 ▬ 2 4 ▬ ▬ 11 

𝑂24 ▬ 6 ▬ 8 ▬ 4 

𝑂25 4 6 ▬ 5 4 ▬ 

𝐽3 

𝑂31 5 7 ▬ 5 ▬ ▬ 

𝑂32 ▬ 3 ▬ 4 6 ▬ 

𝑂33 ▬ ▬ 12 ▬ 8 11 

𝑂34 7 5 ▬ 6 8 ▬ 

𝑂35 7 9 ▬ 6 7 6 

𝐽4 

𝑂41 9 ▬ ▬ 8 ▬ 8 

𝑂42 ▬ 5 ▬ 7 ▬ 6 

𝑂43 3 ▬ 5 7 ▬ 6 

𝑂44 6 ▬ 9 7 5 4 

𝑂45 ▬ 9 7 ▬ 7 ▬ 

𝐽5 

𝑂51 4 5 8 ▬ 6 8 

𝑂52 5 4 ▬ 6 ▬ 8 

𝑂53 5 ▬ 7 ▬ ▬ 6 

𝑂54 ▬ 6 8 ▬ 7 ▬ 

𝑂55 7 ▬ 9 ▬ 8 6 

 

      For the 3×3 complete FJSP, the swarm size and the maximum number of iterations is 4 

and 10, respectively. In the original scheduling plan, the maximum completion time and the 

maximum machine load are both 13. When an emergency order was received at time 5, the 

4th job should be added to the processing sequence (Table III). If the new job was directly 

scheduled, then the maximum completion time and maximum machine load would be 27 and 

21, respectively; under the same conditions, the unprocessed operations and the new job were 

rescheduled, reducing the maximum completion time and maximum machine load to 18 and 

17, respectively. Hence, the rescheduling strategy shortens the maximum completion time, 

and balances the machine load. 
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      In the event of machine failure, the partial FJSP of 5×6 was simulated. The simulation 

results are recorded in Table IV above. 

      In the original scheduling plan, the maximum completion time and the maximum machine 

load are 43 and 39, respectively. When machine 2 failed at time 22, the operation being 

processed and its subsequent operations on that machine could not be processed any more, 

and the current operation was scrapped, calling for reprocessing. The current operation on 

machine was the 4
th

 operation of the 2
nd

 job. After rescheduling, the maximum completion 

time was 44 and the maximum machine load was 36. The rescheduling results were not much 

different from the original results. 

6. CONCLUSIONS 

Based on scheduling strategies, this paper divides dynamic events into three classes (i.e. 

newly added events, occupation events and delayed events). On this basis, the hypotheses, 

constraints, and objective functions of dynamic job-shop scheduling were introduced in 

details. Then, the authors established a dynamic job-shop scheduling model, according to the 

impacts of each type of dynamic events. After that, the PSO was adopted to solve the multi-

objective DJSP, and the coding and decoding processes were explained clearly. Finally, the 

feasibility and robustness of our rescheduling strategy were verified through MATLAB 

simulation. The research results shed new light on the application of swarm intelligence 

in the field of the JSP. 
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