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Abstract 

Flexible job shop Scheduling problem (FJSP) is a classic problem in combinatorial optimization and a 

very common form of organization in a real production environment. Traditional approaches for FJSP 

are ill-suited to deal with complex and changeable production environments. Based on 3D disjunctive 

graph dispatching, this work proposes an end-to-end deep reinforcement learning (DRL) framework. In 

this framework, a modified pointer network, which consists of an encoder and a decoder, is adopted to 

encode the operations to be scheduled according to the selected scheduling features. Then with the 

attention mechanism, an input is pointed as an action in each decoding step, and a recurrent neural 

network (RNN) is used to model the decoder network. To train the network to minimize the makespan, 

a policy gradient algorithm is applied to optimize its parameters. The trained model generates the 

scheduling solution as a sequence of consecutive actions in real-time without retraining for every new 

problem instance. Experimental results show that this method can obtain better performance than the 

classic heuristic rules when only one model is trained on all the test instances. 
(Received in December 2020, accepted in March 2021. This paper was with the authors 1 month for 2 revisions.) 
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1. INTRODUCTION 

FJSP is an extension of the traditional JSP, it is more intractable since each operation can be 

assigned on one or more available machines [1]. At present, most studies assume a static 

manufacturing environment, where all the workshop information is determined in advance, 

hence outputting a deterministic schedule without any modification during its execution. 

However, in today's changeable manufacturing systems, dynamic events such as insertions or 

modifications of orders, machine failures, variations in processing times and so on, will lead to 

a deviation far from the original plan, thus seriously affecting the production efficiency. 

      FJSP has been widely studied over the past decades and various methods have been 

proposed. Heuristic rules [2], can respond to dynamic events instantly, but because of their 

short-sightedness, it is difficult to guarantee optimal solutions and scheduling performance 

varies in different scheduling environments. Meta-heuristic algorithms usually search for 

scheduling solutions iteratively by evolutionary operators or particle movements, such as 

genetic algorithm (GA) [3] and particle swarm optimization (PSO) [4]. Although such methods 

can obtain high-quality solutions, they cannot meet the real-time requirements due to a long 

time of iterative optimization. Moreover, once the problem structure changes, such methods 

need to be redesigned with poor universality. Because FJSP is a NP-hard problem [5], for which 

it is very difficult to find the optimal solution, in the actual environment, the algorithm gives 

up finding the optimal solution and instead tries to find an approximate feasible solution within 

a reasonable time. If a scheduling solution can be constructed automatically according to the 

current scheduling state at different decision steps, the efficiency and quality can be guaranteed 

at the same time, which is the main motivation of this study. 

      Reinforcement learning (RL) [6] does not require a complete mathematical model of the 

learning environment, and adjusts the learning strategy through the evaluative reward obtained 
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through interaction with the environment. Traditional tabular RL is often used to solving small-

scale problems with discrete state space. However, realistic RL tasks always face a continuous 

state space in which there are infinite states. At this time, value function approximation shall 

be considered. Deep Reinforcement Learning (DRL) [7, 8] is a brand new algorithm that 

combines deep learning (DL) and RL to realize end-to-end learning from perception to action. 

Since the 90s, (D)RL has been used to solve the scheduling problem [9-14]. Most of these 

studies selected the appropriate heuristic rules according to the scheduling states. Different RL 

algorithms were used for training to adaptively select scheduling strategies. The scheduling 

results can usually be obtained in a short time and were superior to ordinary heuristic rules. 

However, this type of RL essentially runs in the heuristic search space rather than the solution 

search space, so the solution quality still depends on the selected heuristic, which has been 

proved by our previous research [6]. 

      In recent years, with more and more extensive applications in natural language, the 

sequence-to-sequence model combines with DRL to give rise to a new method to solve 

combinatorial optimization problems [15, 16]. These end-to-end methods take a given problem 

instance as the input and use the trained deep neural network (DNN) to directly output the 

solution, instead of indirectly constructing the solution by selecting heuristic rules. They have 

the advantages of fast solving speed and strong generalization ability. Since it is difficult to 

obtain the optimal solution for most combinatorial optimization problems, the supervised 

learning method that requires a large number of labelled samples for training is intractable to 

apply in practice [17]. Therefore, most of the current studies use DRL to train the model 

[18, 19]. 

      With the motivations above, we utilize an end-to-end DRL approach to solve FJSP to 

minimize makespan. The contributions of this paper can be listed as follows: (1) An end-to-end 

model-based DRL scheduling framework was presented, in which a modified pointer network 

and attention mechanism were adopted. To our knowledge, this is the first attempt to solve FJSP 

using this framework. (2) The static and dynamic representation features were constructed for 

scheduling from the perspective of the overall, task and machine respectively, and were input 

into the model by a specific combination so that the model was able to determine job and 

machine with the highest priority simultaneously. (3) A single model can be trained to find 

near-optimal solutions for problem instances sampled from a given distribution, only by 

observing the reward signals. 

2. END-TO-END DRL SCHEDULING FRAMEWORK 

Our contribution is to propose an adaptive scheduling framework that combines an end-to-end 

DRL and a 3D disjunctive graph. The proposed framework includes three parts: scheduling 

environment, offline learning, and online application (Fig. 1). 

      The scheduling environment is modelled with the 3D disjunctive graph. The disjunctive 

graph-based scheduling solution is to first initialize the ready task set, from which the job with 

the highest priority is dispatched to the machine with the highest priority based on the agent’s 

action. Then the job is removed from the constraint network and its subsequent task is added to 

the ready task set. This process is repeated until the ready task set is empty and the scheduling 

result is obtained. Such a complete process is called an episode. 

      In the offline learning phase, the state xt is input into a critic network and actor network to 

output a baseline and action respectively. The policy gradient algorithm is used to learn a 

stochastic strategy π with the parameter θ. 

      Although it takes a long time to train during the learning phase, once the optimal strategy 

is learned, in the online application phase it can be applied to new scheduling problems, and 

optimal results can be obtained in a short time. 
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Figure 1: Scheduling framework with DRL including scheduling environment, offline learning, and 

online application. 

3. SCHEDULING ENVIRONMENT 

3.1  Problem description 

The FJSP can be described as follows. There are NJ jobs to be processed on NM machines. 

Each job Ji consists of NOi operations where Oih is the hth operation of Ji. Each operation Oih 

can be processed on any machine Mm selected from an available machine set Mih. The 

processing time of operation Oih on machine Mm is denoted as Pihm. The goal is to minimize the 

maximum completion time for all jobs, while satisfying the following constraints: 

(1) Each machine can process only one job at a time (capacity constraint). 

(2) All operations belonging to the same job should be processed in a predetermined order 

(precedence constraint). 

(3) Once the operation has started, no interruption is allowed. 

(4) Transportation times and setup times are negligible. 

      The notations and indices for various parameters used are given in Table I. 

Table I: Notations and indices for various parameters. 

Indices  

i, j Index of jobs, i, j = 1, 2, 3, …, NJ 

h, l Index of operations for a job, h = 1, 2, 3, …, NOi, l = 1, 2, 3, …, NOj 

o Index of all operations, o = 1, 2, 3, …, NO 

m, n, r Index of machines, m, n, r = 1, 2, 3, …, NM 

Parameters  

J Job set 

O Operation set 

Om Set of operations assigned to machine Mm 
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Oready Ready operation set 

M Machine set 

Mih Available machine set for operation Oih 

NJ Total number of jobs 

NO Total number of all operations 

NOi Total number of operations belonging to job Ji 

NM Total number of machines 

NMih Total number of available machines for operation Oih 

Oih hth operation of Ji 

Pihm Processing time of Oih on machine Mm 

Sihm Start time of Oih on machine Mm 

Cihm Completion time of Oih on machine Mm 

Ci Completion time of job Ji 

L A large positive number 

Variables  

xihm Binary variable that is equal to 1 if machine Mm is selected for Oih and 0 otherwise 

yihjlm Binary variable that is equal to 1 if Oih is processed before Ojl on machine Mm and 0 otherwise 

      The mathematical representation of the FJSP is formulated as follows. 

Minimize ∑ 𝑚𝑎𝑥{𝐶𝑖}
𝑛
𝑖=1  (1) 

𝑠. 𝑡.

{
 
 

 
 
𝐶𝑖 ≥ 0, 𝐶𝑖ℎ𝑚 ≥ 0, ∀𝑖, 𝑗,𝑚                                                (𝑎)

∑ 𝑥𝑖ℎ𝑚 = 1, ∀𝑖, ℎ
𝑚∈𝑴𝑖ℎ

                                                 (𝑏)

𝐶𝑖ℎ𝑚 ≤ 𝑆𝑖(ℎ+1)𝑛,𝑖∈[1,𝑁𝐽],ℎ∈[1,𝑁𝑂𝑖−1]                                  (𝑐)

𝑆𝑖ℎ𝑚 + 𝑃𝑖ℎ𝑚 ≤ 𝑆𝑗𝑙𝑚 + 𝐿(1 − 𝑦𝑖ℎ𝑗𝑙𝑚), ∀𝑖, ℎ,𝑚, 𝑗, 𝑙   (𝑑)

 (2) 

      Objective (1) is to minimize the maximum completion time of all jobs. Eq. (2)(a) indicates 

that the completion time of each job and operation must be non-negative. Eq. (2)(b) signifies 

that each operation can only be assigned on one machine. Eq. (2)(c) ensures that the latter 

operation can only be processed after the former operation has been finished. Eq. (2)(d) 

guarantees that at most one process can be processed at a time on each machine. 

3.2  3D disjunctive graph model 

To express the FJSP, this paper proposes a 3D disjunctive graph model that can be expressed 

by G=(V∪V’,C∪D∪E), where V denotes all operations Oihm of jobs that can be processed on 

machine Mm, V’ denotes the operations Oi’h’m’ that do not exist or cannot be processed on 

machine Mm’, C denotes a set of directed solid lines which represent the precedence constraints 

between every two consecutive operations of the same job, D denotes a set of undirected dotted 

lines connecting mutually unordered tasks executed on the same machine, E denotes a set of 

double-dotted lines meaning that each operation can only be processed on one machine. 

      According to the above description, the three-dimensional general scheduling model for 

FJSP as shown in Fig. 2 was established. 
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Figure 2: 3D disjunctive graph model. 
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      When solving with this model, first determine the machine for each operation, and then the 

three-dimensional model is reduced to a two-dimensional one. 

4. SOLVING FJSP BASED ON END-TO-END DRL 

In this section, we formally define the problem and our proposed framework for FJSP with a 

given set of input operations O. Given an input 3D disjunctive graph, represented as a sequence 

of NO  operations in a d-dimensional space 𝑆𝐹 = {𝑓𝑜, 𝑜 ∈ 𝑶}, where 𝑓𝑜 = {𝑓1,⋯ , 𝑓𝑑} ∈ ℝ
𝑑, each 

input operation O can be represented by a sequence of feature tuples {𝑓𝑜
𝑡 ≐ (𝑓𝑆𝑜 , 𝑓𝑑𝑜

𝑡), t = 0, 1, 

…}, where 𝑓𝑆𝑜 and 𝑓𝑑𝑜
𝑡  are the static and dynamic features of the input operation, respectively. 

SFt denotes the set of all input states at a fixed time t. We are concerned with finding a 

permutation of the input operations π that has the minimum makespan. 

      We start from an arbitrary input in SF0, where the pointer π(0) is used to refer to that input. 

At each decoding time 𝑡(𝑡 = 0,⋯ ,𝑁𝑂 − 1), π(t+1) points to one of the available inputs SFt to 

determine the input of the next decoding step; The process is repeated until all operations are 

scheduled and will generate a sequence π of length NO. The goal is to find a stochastic policy 

 𝑝(𝜋 ∣ 𝑆𝐹0) that generates the sequence π in a way that minimizes the makespan while satisfying 

the constraints. The neural network architecture uses the probability chain rule to factorize the 

probability of generating sequence π as: 

𝑝(𝜋 ∣ 𝑆𝐹0) = ∏  

𝑁𝑂−1

𝑡=0

𝑝(𝜋(𝑡) ∣ 𝜋(< 𝑡), 𝑆𝐹𝑡) (3) 

and 
𝑆𝐹𝑡+1 = 𝐹(𝜋(𝑡), 𝑆𝐹𝑡) (4) 

is a recursive update of the scheduling representation with the state transition function F. Each 

term on the RHS of Eq. (3) is computed by the attention mechanism, i.e., 

𝑝(𝜋(𝑡) ∣ 𝜋(< 𝑡), 𝑆𝐹𝑡) = softmax (𝑔(ℎ, 𝑆𝐹𝑡)) (5) 

where g is an affine function that outputs an input-sized vector, and ht is the state of the RNN 

decoder, which summarizes the information of all previous decoding steps π(< t). 

4.1  State, action, and reward 

We propose the dynamic and static features describing the scheduling states from the 

perspectives of overall, task, and machine, as shown in Table II. The overall information, which 

often is in the form of proportion, average, standard deviation, etc., is used to describe the full 

picture of the scheduling problem. Task information reflects the job and operation related 

attributes of each task and the Max-Min scaling is adopted to normalize among different tasks. 

Machine information describes the processable information and scheduled information of each 

machine, and the Max-Min scaling is also used for normalization. 

      Most RL selects problem-specific rules as the execution actions according to the system 

states, but limited heuristic rules can always not completely cover various sorting results. A 

remedy is to select an operation from the ready tasks set at each decision step based on the 

disjunctive graph and each selection corresponds to an action. Since there are precedence 

constraints between different operations of the same job, effective actions can only be selected 

from the ready tasks set with a new masking scheme to set the log-probabilities of selecting any 

operation outside the ready tasks set to – . As mentioned earlier, in addition to the operation 

sequencing, there is also a problem of machine assignment. For this reason, we argue that the 

operation is different when processed on different machines so that the total number of 

operations in the scheduling problem will change from ∑  𝑁𝐽
𝑖=1 𝑁𝑂𝑖 to ∑  𝑁𝐽

𝑖=1 ∑  𝑁𝑂𝑖
ℎ=1 𝑁𝑀𝑖ℎ. 
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Table II: Scheduling features. 

Index Object Attribute Value 

f1 

whole 

static 

Std. of job P.T./average job P.T. 

f2 Std. of O.N. of job/average O.N. of job 

f3 Std. of operation P.T./average operation P.T. 

f4 Std. of O.N. available for machine/average O.N. available for machine 

f5 Std. of P.T. available for machine/average P.T. available for machine 

f6 

dynamic 

Total remaining time/total P.T. 

f7 Average R.T. of job/total P.T. 

f8 Average M.U. 

f9 Std. of M.U./average M.U. 

f10 Std. of M.L./average M.L. 

f11 SM x M.L./average M.L. 

f12 Min. M.L./average M.L. 

f13 

task 

static 

Total P.T. of job 

f14 Total O.N. of job 

f15 Average operation P.T. of job 

f16 Std. of operation P.T. of job 

f17 Average M.N. of each operation of job 

f18 All the M.N. of job 

f19 Operation P.T. 

f20 Operation P.T./job P.T. 

f21 Number of pre-operations 

f22 Total P.T. of pre-operations 

f23 Number of post-operations 

f24 Total P.T. of post-operations 

f25 Available M.N. 

f26 

dynamic 

Total remaining P.T. of job 

f27 Total remaining O.N. of job 

f28 Average P.T. of remaining operations 

f29 Std. of  P.T. of remaining operations 

f30 Average M.N. of remaining operations of job 

f31 All the M.N. of remaining operations of job 

f32 Early start of operation 

f33 Average M.U. of available machines 

f34 Average O.N. assigned for available machines 

f35 Std. of O.N. assigned for available machines 

f36 Average P.T. assigned for available machines 

f37 Std. of P.T. assigned for available machines 

f38 Max. completion time of available machines 

f39 

machine 

static 
P.T. available for machine 

f40 O.N. available for machine 

f41 

dynamic 

Current M.L. 

f42 O.N. assigned 

f43 M.U. 

f44 Max. completion time 

Remark: P.T. denotes processing time, O.N. the number of operations, R.T. remaining time, M.U. and M.L. 

machine utilization and loads. 
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4.2  Network model 

The Pointer Network method can be summarized as using a neural network model to achieve 

sequence-to-sequence mapping. The core idea is to use an encoder to encode the input sequence 

to obtain a feature vector, and then use a decoder to combine an attention mechanism to 

construct the solution in an autoregressive way. RNNs are necessary only when the inputs 

transfer sequential information. But for combinatorial optimization problems like FJSP, any 

random permutation of operations contains the same information as the original inputs and has 

no influence on the final scheduling result. Therefore, we simply discard the encoder RNN and 

directly replace the RNN hidden states with the embedded inputs. 

      As illustrated in Fig. 3, the model contains two main components. The first is an embedding 

set, which maps the inputs into a D-dimensional vector space. The second component is a 

decoder, which points to an input at each decoding step. Here, GRU RNN is used to model the 

decoder network. 

      An attention mechanism is a differentiable structure used to address different parts of the 

input. Fig. 3 illustrates the employed attention mechanism. At each decoding step t, the context-

based attention mechanism with a glimpse is utilized to extract relevant information from the 

inputs using a variable-length alignment vector at. Generally speaking, at specifies how relevant 

each input data point is in the next decoding step t. 
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Figure 3: Our adopted model. 

      Let 𝑓𝑡
𝑜̅̅ ̅ = (𝑓𝑆

𝑜̅̅ ̅, 𝑓𝑑𝑡
𝑜̅̅ ̅̅ ̅) be the embedded input o, and ℎ𝑡 ∈ ℝ

𝐷 be the memory state of the RNN 

cell at decoding step t. The alignment vector at is calculated as: 

𝑎𝑡 = 𝑎𝑡(𝑓𝑡
0̅̅ ̅, ℎ𝑡) = softmax (𝑢𝑡), where 𝑢𝑡

𝑜 = 𝑣𝑎
𝑇tanh (𝑊𝑎[𝑓𝑡

0̅̅ ̅; ℎ𝑡]) (6) 

      Here “;” represents the concatenation of two vectors. The context vector ct essentially 

computes a linear combination of the embedded inputs 𝑓𝑡
0̅̅ ̅ weighted by the attention probability 

𝑎𝑡
𝑜, as follows: 

𝑐𝑡 = ∑𝑖=1
𝑀  𝑎𝑡

𝑜𝑓𝑡
𝑜̅̅ ̅ (7) 

      We compute the conditional probabilities by combining the context vector ct with the 

embedded inputs, and then normalizing the values with the softmax function, as following: 

𝑃(𝜋(𝑡) ∣ 𝜋(< 𝑡), 𝑆𝐹𝑡) = softmax (𝑢̃𝑡
𝑜),   where 𝑢̃𝑡

𝑜 = 𝑣𝑐
𝑇tanh (𝑊𝑐[𝑓𝑡

𝑜̅̅ ̅; 𝑐𝑡]) (8) 
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      In Eqs. (6) to (8), va, vc, Wa and Wc are all trainable variables. 

4.3  Training method 

An RL method using model-free policy is proposed to optimize the parameters 𝜽 of a pointer 

network. The training objective is the expected makespan for a given input graph s, which is 

defined as: 

𝐽(𝜽 ∣ 𝑠) = 𝔼𝜋∼𝑝𝜃(⋅∣𝑠)𝐶(𝜋 ∣ 𝑠) (9) 

      During training, the graphs are drawn from a distribution  𝒮 , and the overall training 

objective involves sampling from the distribution of graphs, i.e. 𝐽(𝜽) = 𝔼𝑠∼𝒮𝐽(𝜽 ∣ 𝑠). 
      We utilize policy gradient methods and stochastic gradient descent to optimize the network 

parameters. Using the REINFORCE algorithm, the gradient can be formalized as: 

∇𝜃𝐽(𝜃 ∣ 𝑠) = 𝔼𝜋∼𝑝𝜃(∣𝑠)[(𝐶(𝜋 ∣ 𝑠) − 𝑏(𝑠))∇𝜃log 𝑝𝜃(𝜋 ∣ 𝑠)] (10) 

where b(s) denotes a baseline function independent of 𝜋 and estimates the expected makespan, 

whose addition reduces the variance of the gradients without affecting the value of ∇𝜃𝐽(𝜃 ∣ 𝑠). 

      By drawing sample graphs 𝑠1, 𝑠2, … , 𝑠𝐵~𝒮  under independent and identical distribution  

and sampling a single solution per graph, i.e. 𝜋𝑖 ∼ 𝑝𝜃(⋅∣ 𝑠𝑖) , the gradient in Eq. (10) is 

approximated by Monte Carlo sampling as follows: 

∇𝜃𝐽(𝜃) ≈
1

𝐵
∑  

𝐵

𝑖=1

(𝐶(𝜋𝑖 ∣ 𝑠𝑖) − 𝑏(𝑠𝑖))∇𝜃log 𝑝𝜃(𝜋𝑖 ∣ 𝑠𝑖) (11) 

      Using a parameterized baseline to estimate the expected makespan usually improves 

learning efficiency. Therefore, an auxiliary network called a critic and parameterized by 𝜃𝑣, is 

introduced to learn the expected makespan found by the current policy 𝑝𝜃 given a state. 

      Stochastic gradient descent is used to train the critic on a mean squared error objective 

between the predicted value 𝑏𝜃𝑣(𝑠) and the actual makespan. The objective is computed as 

ℒ(𝜃𝑣) =
1

𝐵
∑  

𝐵

𝑖=1

∥∥𝑏𝜃𝑣(𝑠𝑖) − 𝐶(𝜋𝑖 ∣ 𝑠𝑖)∥∥2
2
 (12) 

5. EXPERIMENTS 

5.1  Experimental conditions 

In the study, an improved pointer network is used as an actor to model the policy. The core of 

the pointer network is the encoder and decoder. Since the input order in FJSP does not affect 

the result, a one-dimensional convolutional (Conv1D) layer with 1024 hidden units and a kernel 

size of 1 is used directly instead of RNN; the decoder uses a GRU RNN with 1 hidden layer 

with 1024 hidden units each. The critic network contains 3 Conv1D layers with the hidden units 

(80, 80, 1) and a kernel size of 1 each. Both models are trained by Adam optimizer with a 

learning rate of 10-4. To prevent the gradient explosion, the L2 norm of the gradients is clipped 

to 2. The sensitivity analysis on Mk01 was carried out for the number of actor hidden layers, 

the number of hidden units per layer and the learning rate for both critic and actor network as 

shown in Fig. 4. The following conclusions can be drawn: (1) The number of actor hidden 

layers has little effect on the scheduling result. (2) 1024 hidden layer nodes guarantee faster 

convergence to the optimal result. (3) When the learning rate is 0.0001, the learning process is 

more stable. Other parameters directly use the empirical parameter values in [19]. The proposed 

algorithm is implemented by Pytorch 1.7 and runs on a PC platform with Windows 10, 64 bit 

operating system, 32 Gb RAM, Intel i9 3.6 GHz CPU. 
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a) Number of the actor hidden layers 

 
b) Number of hidden units in each layer 

 
c) Learning rate of actor and critic network 

Figure 4: Parameter sensitivity analysis on the Mk01. 

5.2  Experimental results 

To verify its effectiveness, the proposed algorithm was applied to train a single model to solve 

FJSPs in different scales, and compared with nine heuristic rules (three job dispatching rules: 

shortest processing time – SPT, shortest remaining processing time – SRPT, fewest operation 

number remaining – FOPNR; three machine assignment rules: earliest finish – EF, shortest 

processing time – SPT, shortest processing time plus machine work – SPTW; pairwise 

combination to get nine rules). The author in [19] only used static features as the input of the 

decoder network, but in FJSP, dynamic features will also have a very profound impact on 

scheduling results. Therefore, it is necessary to input both dynamic and static features into the 

network and be compared with the situation where only the static features are input. We call 

the former AC-SD and the latter AC-S. 

      We selected Brandimarte’s Data benchmarks for verification, which included 10 scheduling 

instances in different sizes. The scheduling results are shown in Table III. The following 
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conclusions can be drawn: (1) The optimal scheduling rules of different scheduling instances 

are marked in red. It can be seen that scheduling rules have different performance. (2) The two 

RL methods are significantly superior to each scheduling rule on all scheduling instances, which 

indicates that our proposed algorithm has a stronger generality. (3) The average performance 

of AC-SD is better than that of AC-S. This is because AC-SD considers both static and dynamic 

features, and can better grasp the essence of the scheduling problem. 

      To further verify the generalization performance of the algorithm, scheduling cases were 

randomly generated for training, and then their performance on 100 unknown cases was tested. 

Two test scenarios were designed. Test scenario 1 had the same parameter distribution as the 

training scenario, and test scenario 2 adopted parameter distribution different from the training 

scenario. Parameter settings for training and test scenarios are shown in Table IV. 

Table III: Scheduling results comparison. 

Instances Mk01 Mk02 Mk03 Mk04 Mk05 Mk06 Mk07 Mk08 Mk09 Mk10 Ave. 

Size 10×6 10×6 15×8 15×8 15×4 10×15 20×5 20×10 20×10 20×15  

SPT+EF 81 85 465 112 250 161 325 717 563 509 326.8 

SPT+SPT 80 76 553 195 264 269 371 836 722 585 395.1 

SPT+SPTW 81 84 477 106 249 160 328 766 564 524 333.9 

SRPT+EF 71 60 374 120 236 126 278 643 535 373 281.6 

SRPT+SPT 73 65 579 205 265 264 446 777 716 517 390.7 

SRPT+SPTW 69 71 381 120 265 178 295 728 525 414 304.6 

FOPNR+EF 76 69 374 123 242 149 278 661 559 404 293.5 

FOPNR+SPT 74 65 579 198 259 278 446 761 712 540 391.2 

FOPNR+SPTW 59 80 381 111 224 162 295 717 550 460 303.9 

LB 36 24 204 48 168 33 133 523 299 165 163.3 

UB 42 32 211 81 186 86 157 523 369 296 198.3 

AC-S 49 47 257 86 222 149 227 581 473 405 249.6 

AC-SD 44 28 245 74 193 123 216 523 386 337 216.7 

Table IV: Parameter distribution in training and test scenarios. 

Parameter Training scenario Test scenario 1 Test scenario 2 

Number of jobs U[5, 20] U[5, 20] N(15, 4) 

Number of operations in each job U[5, 15] U[5, 15] U[3, 20] 

Number of machines U[5, 15] U[5, 15] N(10, 4) 

Number of available machines for each operation U[2, 5] U[2, 5] U(2, 8) 

Operation processing time U[1, 99] U[1, 99] N(120, 20) 

 

      The parameters as set before (the number of episodes is increased to 100,000) are used to 

train the algorithms AC-S and AC-SD with two different state expressions. To compare the 

training effects of the two algorithms, 50 random cases generated according to the distribution 

of training scenario are selected as the verification set. The optimal scheduling strategies of the 

two algorithms on the verification set are selected (AC-S and AC-SD got their best strategies 

in the generations 82000 and 93000, respectively), and their parameters are restored into the 

neural network structure, which are used to solve the scheduling problems in the two test 

scenarios respectively, and to compare with the heuristic rules. The results are shown in Fig. 5. 

The following conclusions can be drawn: (1) Both RL scheduling strategies are significantly 

better than heuristic rules in scenario 1, and AC-SD is better than AC-S. (2) Both RL scheduling 

strategies are significantly better than heuristic rules in scenario 2, indicating that RL agents 

still have strong generalization in test cases from different distributions. 
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a) Test scenario 1  b) Test scenario 2 

Figure 5: Results comparison between two end-to-end RL strategies and heuristics in two test scenarios. 

6. CONCLUSION 

This research proposed an end-to-end DRL scheduling framework based on a 3D disjunctive 

graph model, in which the FJSP was formulated as a sequence decision-making problem. With 

the improved pointer network, each operation was encoded into a high-dimensional embedded 

vector. Through the attention mechanism, an input was pointed as an action at each decoding 

step. 20 static features and 24 dynamic features from the perspectives of overall, task and 

machine were selected, and the input operations were expanded through feature combinations 

to ensure that only one action is needed to simultaneously determine the job and machine with 

the highest priority. Experimental results showed that our algorithm can get significantly better 

scheduling results than heuristic rules with a single trained model, indicating that the model can 

adapt to different scheduling instances. Besides, the performance of the two models with the 

input of static and dynamic features, and only the static features was compared, and the results 

showed that the former had a better average performance. 

      Compared with the traditional RL method, this method essentially searches in the solution 

space instead of the rule space and improves the solution quality. The advantages of this 

algorithm over meta-heuristics lie that through offline training, it can be applied online to 

scheduling problems of different scales without retraining, which has strong generalization and 

adaptability. Future research will focus on the following aspects. Firstly, we will perform 

sensitivity analysis on each hyperparameter to further improve the solution quality. Secondly, 

we will try to use more advanced policy gradient methods, such as A3C, TRPO, etc. to enhance 

the existing actor-critic. Finally, the proposed method should be applied to reactive scheduling 

in a dynamic scheduling environment. 
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