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Abstract 

This paper analyses the picking performance of a robotic mobile fulfilment system (RMFS) and 

proposes a Simulation Framework of RMFS based on cellular automata (SFRMFSCA). Many previous 

RMFS simulation platforms stipulate all aisles to be set up in a fixed directional road network for one-

way lines. The warehouse robot had to travel an unnecessarily long distance to perform tasks. We relax 

the one-way constraint on aisles and cross aisles in the warehouse and allocate the right of way among 

the warehouse aisles and cross-aisles intersection by referring the idea of traffic light and traffic flow 

control to the RMFS warehouse scenario. To improve the efficiency of RMFS order picking, this paper 

designs a comprehensive strategy combining adaptive traffic light update rule, deadlock detection and 

recovery algorithm, and traffic control to improve the traffic flow of the system. A series of numerical 

experiments show that the comprehensive strategy designed in this paper can effectively improve the 

order picking efficiency of RMFS and reduce the probability of scale deadlock. These results and 

strategies provide a useful reference for designers who initially set up the RMFS warehouse. 
(Received in May 2021, accepted in July 2021. This paper was with the authors 1 month for 2 revisions.) 
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1. INTRODUCTION 

As the key hub in logistic operations, the warehouse faces the challenges of small orders, large 

assortment, tight delivery schedules, and varying workloads depending on special sales or 

discounts [1]. A warehouse is labour-intensive, and companies are increasingly seeking new 

storage and order-picking technologies to reduce operational costs and increase throughput, 

especially e-commerce companies that sell fast-turnover goods and experience strong 

fluctuations in demand [2]. According to [3], order picking is the highest priority activity to 

improve productivity in a warehouse due to its high contribution to the total operating costs of 

a distribution centre. It can be even stated that the service-level and performances of the whole 

supply chain rest upon the efficiency of the ordering picking system (OPS) [4]. 

The robotic mobile fulfilment system (RMFS) is a new type of automated storage and 

picking system that is more efficient than the traditional parts-to-picker system. This technology 

has been widely used in various e-commerce shopping platforms, such as Amazon, Taobao and 

JD.COM in China. In addition, as shown in [3, 5], the picking rate of a parts-to-picker system 

may be as much as double that of traditional picker-to-parts systems, where 50 % of the picker 

time is spent travelling around the warehouse. However, installing an RMFS typically requires 

a multimillion-dollar investment, most of which is spent on the robots that carry the pods. The 

question thus arises of how to improve the warehouse picking efficiency by reducing the robot 

travel distance or travel time, which is especially important given that time is of great economic 

value for the planning and control of the system. Many previous research studies have stipulated 

that the aisles and cross aisles are one-way [6-10], the main purpose is to increase the space 

utilization rate of the warehouse. As a result, warehouse robot has to travel longer distances to 

complete its tasks. This is equivalent to taking the picking time of order in exchange for space 

utilization, which will reduce the order picking efficiency more or less in a long run. Besides, 
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some RMFS have a long aisles layout, the extra distance may be very long. And the method to 

allocate the right of way in the crossroad between aisles and cross aisles is also a problem that 

need to be studied. 

This paper studies bidirectional aisles and cross aisles of the two-way road plus virtual 

traffic lights to model the problem, and develops the Simulation Framework of RMFS based 

on Cellular Automata (SFRMFSCA), which can help to explore the effect to different 

warehouse settings. Collision and deadlock have always been hot topics in RMFS modelling 

research, and this paper enriches the current RMFS simulation research from a new perspective. 

And this paper also proves the idea that the order picking efficiency of the RMFS system can 

be optimized through traffic control in the warehouse. Finally, this paper designs a 

comprehensive strategy combining adaptive traffic light update strategy, deadlock detection 

and recovery algorithm and traffic control to improve traffic flow of the RMFS, and designed 

experiment proves the effectiveness of the comprehensive strategy. 

The remainder of the paper is organized as follows: In section 2 a short literature review 

about order picking efficiency (OPE) of RMFS is presented. In this section, all relevant 

questions regarding the topic are explained. In section 3 the SFRMFSCA was presented. In 

section 4 the numerical experiments are designed and the result was analysed. The last section 

represents concluding remarks. 

2. LITERATURE REVIEW 

In this chapter, the literature review regarding the aspects relevant to this paper is presented. 

The focus is set on the research about RMFS, cellular automata and all relevant questions that 

follows. 

2.1  Robotic mobile fulfilment system 

The design of the warehouse systems can be grouped into three hierarchical categories [4]: 

system analysis, design optimization, and operations planning and control. From the system 

analysis level, which is essentially the viewpoint of the present research, many warehouse 

simulation models have been designed to study warehouse picking efficiency [7]. These include 

the closed queueing network model for RMFS proposed by Nigam et al. [11], which estimates 

order throughput time for single-line orders in an RMFS with a turnover class-based storage 

policy. Lamballais et al. and Azadeh et al. extended the work of Nigam et al. by deriving travel-

time expressions for multi-line and single-line orders in an RMFS with storage zones [2, 12]. 

They developed a semi-open queueing network to estimate the average order cycle time and 

optimize the use of robots and workstations [2]. Zou et al. also proposed a semi-open queueing 

network [13] and found that the handling-speed-based assignment rule outperforms the random 

assignment rule when workers differ significantly in handling time and that the neighbourhood-

search approach is very nearly an optimal assignment rule (requires less time). Yuan and Gong 

[14] built a queueing network model to describe an RMFS with two protocols for sharing robots 

between pickers and calculating the optimal robot number and speed, and they provide effective 

design rules for an RMFS. In 2017, Merschformann et al. [8] built a fine-grained simulation 

framework called “RAWSim-O” that demonstrates a real-world application of a simulation 

framework by integrating simple robot prototypes based on vacuum-cleaning robots, which is 

extremely helpful for studying how to control systems involving multiple mezzanine floors. 

While, all of this paper are assume that aisles and cross aisles are directional [2], and there can 

only be vehicles travelling in one direction at the same time. However, in some actual 

warehouse system, to improve the efficiency of order picking, there are still parallel road 

vehicles that can accommodate two-way roads. Inspired by this kind of roadway environment, 

we developed a traffic light control strategy suitable for the RMFS system and proposed an 
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RMFS simulation framework based on cellular automata, which broaden the methods used in 

RMFS simulation. 

2.2  Cellular automata 

The concept of cellular automata was originally developed in the 1940s and is a mathematical 

idealization of a physical system in which time and space are discrete, and every physical 

quantity can take on only a finite set of discrete values. A cellular automaton (CA) consists of 

a regular uniform lattice (or “array”), usually infinite in extent, with a discrete variable at each 

site. A CA evolves in discrete time steps, with the value of the variable at one site being affected 

by the values of variables at sites in the “neighbourhood” of the previous time step. The 

neighbourhood of a site is typically the site itself and all immediately adjacent sites. The cellular 

variables at each site are updated simultaneously (“synchronously”) based on the values of the 

variables in their neighbourhood at the preceding time step and according to a definite set of 

“local rules” [15]. 

Cellular automata are famous for allowing efficient computer simulations that express how 

the neighbourhood influences the individual (or “cell”). This approach is already widely used 

in many computer simulations fields, be it in the natural sciences or humanities, such as biology, 

computer science, physics, transportation, the military, human behaviour etc. It is an essential 

approach to analyse and understand traffic-flow dynamics and has received significant research 

attention [16-23]. Some classical CA models have been proposed, such as 184 models [22], the 

Nagel–Schreckenberg (NS) model [24] and its transformation, the Biham–Middleton–Levine 

(BML) model [25], velocity-dependent randomization model [16], and velocity effect model 

[26]. Among these models, the Nagel-Schreckenberg model is the most popular and most 

applied cellular automaton model by far [24]. 

      In summary, the article researches the order picking process of RMFS and uses a cellular 

automaton model to simulate the moving behaviour of ROBOTs, which broadens the method 

used in warehouse simulation. Besides, the effect of traffic light’s updated rules and their 

variance were also studied. 

3. DESCRIPTION OF SFRMFSCA MODEL 

      This section introduces assumptions and preliminary settings for the SFRMFSCA. First, we 

consider a warehouse with blocks’ layout have 2 n  pods, where n  is the adjacent pallet 

number in one block at its length (see the warehouse configuration in Fig. 1, in which 6n = ). 

The order picking process can be described as follows. Once the order is assigned to a 

workstation, robots can fetch the goods for it. Goods are stored on inventory pods. A robot 

moves to a pod (from blue lattice V to orange lattice P in Fig. 1), lifts it, and brings the pod to 

a workstation (from lattice P to workstation 1 in Fig. 1) for order picking, using the aisles and 

cross-aisles. Once the picker has retrieved the required goods from the pod, the robot transports 

the pod to a storage location (original place or somewhere else that storage policy required) and 

stores it there (from workstation 1 to the yellow lattice P for fixed storage). During the move in 

the RMFS, the intersection of the aisles and cross-aisles have a virtual traffic light to allocate 

the right of way for the warehouse robot to avoid crashing. The status of traffic lights has only 

two types, green light (GL) or red light, and these states guide the robot’s road selection for the 

next time step, which means that, if the traffic light turn green, then the robot can go straight, 

turn left or right, or make a U-turn (which corresponding to i, ii, iii and iv, respectively for a 

car in front of aisles A, light purple in Fig. 1), and if the light stays green for one incoming 

street for a time T, then it stays red for the other streets for the same time interval T. However, 

if its state is red, the robot must wait at the end of the road until the light changes to green. For 

example, an intersection (see the light yellow circle area in Fig. 1) connect 4 routes A, B, C and 
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D. If the traffic light in the head of aisles A turn green, then the light to B, C and D must turn 

red at the same time. Besides, how to arrange the order of the light show green is also a topic 

for traffic control, such as clockwise order (the traffic light in A shown green, then B, C and D, 

respectively, light yellow circle in Fig. 1), anticlockwise (A→  D C B), 8-like (A→C→

B→D) and anti-8-like (A→C→D→B). 

 

Figure 1: The warehouse map of SFRMFSCA. 

Second, we will describe the order execution system. As shown in the scenario above, there 

are three OD (origin-destination) pairs for an order to be picked. For each order, the robot moves 

along the shortest road from origin to destination. This path-finding strategy is guided by the 

Dijkstra shortest-path algorithm. If more than one shortest road exists for a given OD pair, then 

the robot chooses the path with the maximum mean velocity to the next intersection. Li et al. 

[19] have tested the efficiency of the strategy. If the maximum mean velocity is also the same, 

then this shortest path is selected at random. In addition, the time required for a robot to lift or 

drop a shelf and the order-picking time at the workstation is omitted, which means that the robot 

has infinite efficiency for lifting and dropping a pod and that the workstations in the 

SFRMFSCA have infinite picking efficiency. The reason we set the scene in this way is trying 

to focus on the robots’ order fulfilment process and their interaction in doing their tasks. This 

is necessary and important especially when there are a huge number of robots in the system 

shuttling between storage area and workstation(s). 

Third, we introduce robots’ updating system based on Nagel-Schreckenberg (NS) CA 

model. Robot displacement in the SFRMFSCA is vital for the problem description. We 

redesigned the update rule of each robot in the system according to the NS model as follows: 

Acceleration: If the velocity 𝑣 of a robot is less than 𝑣max and if the distance value to the next 

robot ahead is greater than v + 1, the speed is incremented by one [v → v + 1]. Slowing down 

(due to other cars): If a robot at site i sees the next robot at site i + j (with j ≤ v), it reduces its 

speed to j – 1 │ [v → j – 1], and Car motion: Each robot advances 𝑣 sites. When simulation 

starts, time is discretized into time steps (TS), which can be regarded as the simulation clock. 

In each time step, the update rule above is implemented. Each robot has a maximum velocity 

vmax, which means that, if the robot moves at maximum velocity, it can advance vmax lattice 

steps, so we can have only three update rules compared with the four rules of the classical NS 

model (the missing one is randomization). From the SFRMFSCA’ standpoint, an ideal 
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warehouse environment is controllable, so randomization is negligible. After explaining the 

three main parts of the SFRMFSCA model above, we list the detail of the simulation parameters 

default settings in Table I. 

Table I: Parameters of SFRMFSCA warehouse (default value). 

Parameter Value Parameter Value 

Warehouse area 1360 m2  (34 40) GT/Traffic cycle 2TS/8TS 

Order size for each simulation 50, 100 or 500 orders Update order Anticlockwise 

Block shape 2 × 6 Robot number 14 or 1-30 

Warehouse’s block 3 × 10 Workstation number 1 

Order dispatch rule Sequential processing Lift-right preference Lift 

Storage policy Random Maximum Speed 2 lattice/TS 

Road selection Shortest distance→  Maximum average speed→ Random (SMR) 

      We diagram the algorithm in Fig. 2 as follows. 

 
a) Flow chart of main programming 

 
b) Flow chart of NS cellular automata 

Figure 2: Flow chart of the SFRMFSCA program. 
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4. NUMERICAL EXPERIMENT 

The efficiency of order picking for an RMFS can be affected by many factors, such as the 

number of warehouse robot, the traffic light update rule used and the traffic control of the robots 

in the system. We conducted a series of numerical experiments to study the sensitivity of 

different warehouse configurations to order picking efficiency (OPE) and Time step used (TSU) 

to verify the effectiveness of the designed adapted traffic control strategy. All computations 

were executed on a PC with an AMD Ryzen 5 4600H CPU@ (3 GHz) and 16 GB RAM and 

with the implementation of the C++ in Visual Studio 2017. Each experiment was repeated more 

than 50 times under the same experimental conditions, with just the random seed varying among 

experiments. 

4.1  Optimal warehouse robot number 

How to decide the optimal number of robots for an RMFS warehouse? This question is very 

basic and fundamental for the parameter setting. If the number of warehouse robot sets too 

small, the efficiency of the RMFS cannot be fully utilized. Otherwise, if the number sets too 

large, it may decrease the efficiency and even cause waste of cost. To verify the optimal 

warehouse robot number for the warehouse of Fig. 1, we conducted an experiment (# 1) to 

verify the number and the parameter setting of the experiment was shown in Table II. What the 

experiment intended to do is try to find a value about the warehouse robots number to maximize 

the OPE for a warehouse like Fig. 1. 

Table II: Parameters settings of experiment # 1. 

Parameter Value Parameter Value 

Warehouse area 1360 m2  (34 40) GT/Traffic cycle 2TS/8TS 

Order size for each simulation 60 orders Update order Anticlockwise 

Block shape 2 × 6 ROBOT number 4-20 

Warehouse’s block 3 × 10 Workstation number/Pos. 1/mid-bottom 

Order dispatch rule Sequential processing Lift-right preference Lift 

Storage policy Random Maximum speed 2 lattice/TS 

Road selection SMR Repeated time 50 

 

Figure 3: Time step used with the increase of robots’ number for 60 orders. 

      The TSU result of the simulation shown in Fig. 3. We can get that when the number of robot 

increase from 4 to 20, the decrease of the order picking time is not a linear function. It can be 

observed that the picking time for a certain number of orders (60 orders) is first reduced and 
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then increased, rather than a continuous decrease process. We can also get the optimal 

warehouse robot number is 14 because under this scenario the OPE is highest compared with 

other settings for the time used for a fixed number of order picking. And its value is 451.72 – 

the least of all the TSU results. By comparing and observing the order picking process of 

different robots in the visual interface, we found that when the number of robots increases to a 

certain amount, the interaction between vehicles will have greater impact on the order picking 

process, especially near the workstation area. The collection and dispersal of such vehicles can 

easily cause traffic congestion. Therefore, the robot needs to wait or change lines to complete 

the order, thus causes more time wastage. 

4.2  Effect of traffic light’s update rule 

To verify the effect of the traffic light’s update rule to the OPE, we analysed several numerical 

experiments run with optimal settings for one workstation with 4-30 robots. The variable was 

marked by bold font in Table III. This experiment (# 2) was repeated 100 times to ensure that 

the results are stable and reliable. 

Table III: Parameters settings of experiment # 2. 

Parameter Value Parameter Value 

Warehouse area 1360 m2  (34 40) GT/Traffic cycle 2TS/8TS 

Order size for each simulation 500 orders Update order Clock/Anti/8/Anti-8 

Block shape 2 × 6 ROBOT number 4-30 

Warehouse’s block 3 × 10 Workstation number/Pos. 1/right-bottom 

Order dispatch rule Sequential processing Lift-right preference Lift 

Storage policy Random Maximum speed 2 lattice/TS 

Road selection SMR Repeated time 100 

 

 

Figure 4: TSU for different number of warehouse robots and different traffic light update rule. 

The results are shown in Fig. 4. and we can observe that when the number of robots is less 

than 13, the Anticlockwise traffic light update rule is the best traffic control light update rule 

among these four methods tested and then come to the 8-like update rule, the anti-8-like update 

rule and clockwise traffic light update rule, respectively. However, with the increase of the 

number of robots, the influence of different traffic light update rules on order picking efficiency 
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gradually decreases, and the counter clockwise traffic update rule gradually become the worst 

among the four traffic light update rules, which the 8-like traffic light update rules gradually 

gains the advantage. It was also noted that the clockwise update rule was the worst performer, 

with a time-step difference of less than 10 % between the two traffic light updates. In order to 

better understand the detailed information of the difference between counter clockwise traffic 

light updating rules and clockwise traffic light updating rules, we also calculated the ratio of 

the difference between clockwise traffic light updating rules and counter clockwise traffic light 

updating rules. It can be observed from the figure that the time-step waste rate caused by the 

regulation of traffic light update rules is not in a linear relationship with the number of robots, 

but shows a trend of decreasing first and then increasing. The minimum value is obtained when 

the number of robots is about 15 or 16, which is also the key point where the clockwise and 

counter clockwise traffic signal light update rules reverse the efficiency of traffic control for 

order picking. It can be mutually verified with our previous analysis conclusion. 

In addition, there is a “by-product” conclusion in this experiment. When we adopt different 

traffic light update strategies, the optimal number of robots for the RMFS is different. For 

example, it can be observed from Fig. 4 that when the RMFS adopt the 8-like or anti-8-like 

traffic light update rule, the optimal number of robots is 21. In contrast, the number of robots is 

22 when the clockwise traffic update rule is adopted. Though this difference is not very big, we 

can also get the info that the optimal number of robots of an RMFS can be affected by changing 

the traffic light update rule. 

4.3  Adaptive traffic light control strategy 

It can be seen from the chapter 4.2 that traffic light can be used to improve the efficiency of 

order picking by changing the rules used in traffic light update. To fully utilize these 

characteristics, we designed a new adaptive traffic light control strategy (ATLCS) to optimize 

the OPE by regulating traffic flow. Under the adaptive traffic light control strategy, if the 

number of robot vehicles on the current road reaches more than half of the road length (discrete 

space can be compared with integer value), the traffic lights at the road head (every aisle or 

cross-aisle have two roads, and the robot follows left move preference, from the tail of the road 

in and the head of the road out) will automatically turn green to prevent the occurrence of greater 

congestion, which is more efficient than a fixed update rule. The basic parameter setting of the 

experiment (# 3) to verify this efficiency is shown in Table IV. 

      Deadlock is a situation where a set of processes are blocked because each process is holding 

a resource and waiting for another resource acquired by some other process. In our 

CARMFSCA simulation, the process is order picking and the resource is lattice space in the 

warehouse. Collision and deadlock are an essential research topic for RMFS simulation no 

matter in industry or academia. Especially scale deadlock is fatal to RMFS simulation because 

its occurrences will cause the paralysis of the entire RMFS system. 

Table IV: Parameters settings of experiment # 3. 

Parameter Value Parameter Value 

Warehouse area 1360 m2  (34 40) GT/Traffic cycle 1TS/4TS 

Order size for each simulation 500 orders Update order Anticlockwise/ATLCS 

Block shape 2 × 6 ROBOT number 4-30 

Warehouse’s block 3 × 10 Workstation number/Pos. 1/right-bottom 

Order dispatch rule Sequential processing Lift-right preference Lift 

Storage policy Random Maximum speed 2 lattice/TS 

Road selection SMR Repeated time 100 
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      In this experiment, we compare the efficiency of order picking between the anticlockwise 

traffic light update rule and ATLCS with the increase of warehouse robot number. Besides, 

with the increase of robots’ number, scale deadlock may occur in RMFS. As can be seen from 

the Fig. 4, the new and adaptive traffic light rule can effectively reduce the TSU and improve 

the OPE. Scale deadlock rate increases rapidly after there are more than 23 robots in the RMFS 

warehouse system. Besides, when the number of robots reaches 27, scale deadlock will occur 

at a probability of more than 95 % in the SFRMFSCA warehouse. 

 

Figure 5: TSU and scale deadlock rate with the increase of warehouse robots number. 

4.4  Comprehensive strategy 

After the analysis of experiment # 3, we focus on solving the deadlock problem in a warehouse 

from a traffic control and optimization perspective, design a comprehensive strategy (CS) that 

combining adaptive traffic light system, deadlock detection and recovery and traffic control at 

bottleneck area. The deadlock detection and recovery algorithm use a depth-first method to 

search for the deadlock road rings. If a ring was found, a recovery algorithm will be called to 

solve the deadlock by changing the destination road of a head robot on one road. Besides, 

adaptive traffic light update strategy and traffic control were also integrated into the 

comprehensive strategy to optimize the traffic flow and to improve the OPE. The parameter of 

experiment # 4 was shown in Table V. 

Table V: Parameters settings of experiment # 4. 

Parameter Value Parameter Value 

Warehouse area 1360 m2  (34 40) GT/Traffic cycle 1TS/4TS 

Order size for each simulation 500 orders Update order Anticlock./ATLCS/CS 

Block shape 2 × 6 ROBOT number 10-30 

Warehouse’s block 3 × 10 Workstation number/Pos. 1/right-bottom 

Order dispatch rule Sequential processing Lift-right preference Lift 

Storage policy Random Maximum speed 2 lattice/TS 

Road selection SMR Repeated time 100 

The following conclusions can be drawn from Fig. 6 that (a) The comprehensive strategy 

can effectively improve the OPE and such improvement will be more and more significant with 
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the increase of the number of robots. (b) Although the adaptive traffic light control strategy can 

effectively improve the efficiency of order picking, the probability of scale deadlock increases 

rapidly after there are more than 20 robots, and the deadlock rate is close to 97 % when there 

are about 29 robots. (c) The CS is not as efficient as the ATLCS in OPE when the number of 

robots is small, but with the increase of the number of robots in the system, the difference is 

gradually decreasing, and the strategy of ATLCS alone has been risky due to the high incidence 

of scale deadlock. (d) This CS combines the high efficiency of the adaptive traffic light control 

strategy with the obstacle avoidance mechanism of deadlock detection and recovery algorithm 

and traffic control, and effectively solves the traffic problems at specific congestion points, thus 

realizing the unity of deadlock avoidance and high OPE. 

 

Figure 6: TSU and scale deadlock rate with the increase of robots’ number under different scenarios. 

5. CONCLUDING REMARKS 

This paper proposes a new warehouse simulation model (SFRMFSCA) and uses it to investigate 

the optimal location of picking stations, the optimal number of robots, and the effect of traffic 

control in a warehouse of about 1400 m2. The model provides several characteristics compared 

with the existing warehouse simulation models: 1) Robots do not crash when the cellular 

automaton model is used for robot navigation in warehouses. 2) We introduce traffic lights to 

allocate the right-of-way, which is more intuitive than other warehouse simulation models or 

software. 3) The robot speed is described in more detail, and we consider the acceleration and 

deceleration of robots in bidirectional aisles and cross-aisles road based on cellular automata. 

4) This article clarified the optimization effect of traffic control on OPE and designed a 

comprehensive strategy to verify the effectiveness of this strategy. The main idea behind the 

SFRMFSCA model is that it emphasizes the effectiveness of traffic control for robots on OPE 

improvement based on cellular automata. In summary, the SFRMFSCA provides a more 

detailed description of robots’ movement on bidirectional warehouse aisles and cross-aisles and 

designed a comprehensive strategy to optimize the OPE. 

      Several areas are worth exploring in future research. For example, robot vehicles can move 

more freely to adapt to different storage picking environments, design more efficient traffic 

control rules to optimize the OPE of RMFS, etc. In addition, the comparison between different 

RMFS simulation environments is also a valuable research area in the future. 
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