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Abstract 

This paper is aimed at speeding up past stock movement simulation in sporadic demand inventory 

control making it more suitable to deal with large scale real life problems connected for example with 

stock management of spare parts used in the maintenance of production equipment. Thus, in continuous 

review, fixed order quantity inventory control policy, we suggest reducing number of simulated 

combinations of reorder point and replenishment order quantity replacing all combinations search with 

the local search. The local search is based on minimal and maximal reorder point coming from linear 

regression and bootstrapping. When simulating randomly generated intermittent data with increasing 

nonzero demand quantities the significant savings of computational time are reached while bringing up 

to 50 % of simulated timeseries to reach the best possible holding and ordering costs and another 40 % 

to reach the maximal deterioration of these costs up to 15 %. Upgraded simulation represents efficient, 

data driven and assumptions free approach to the sporadic demand stock management outperforming 

individual application of parametric forecasting methods. 
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1. INTRODUCTION 

For most of the manufacturing and service companies, efficient control of spare parts inventory 

is essential for the product and equipment maintenance [1]. However, sporadic demand patterns 

represented by a significant amount of periods with zero demand and high variability of nonzero 

demand, substantially complicates forecasting [2] and inventory control [3]. The examples of 

such demand can be found for example in car manufacturing [4], aviation [5] or healthcare [6]. 

      In many inventory control policies described in the literature a replenishment order is placed 

when the stock level drops below a reorder point [7]. The reorder point represents the amount 

of stock that prevents a company running out of stock during an order lead time period and its 

calculation is usually based on a forecast of average consumption [8]. Traditional forecasting 

techniques like exponential smoothing or regression work well if the demand is regular but with 

the growing occurrence of zero demand periods these methods suffer from inaccuracy as 

pointed out by Croston [9], who suggests a modification of single exponential smoothing and 

proves it to be more suitable when dealing with sporadic demand. Croston‘s method becomes 

a cornerstone for many researches trying to improve its performance throughout the years. We 

recommend examining for example the modification of Croston‘s method proposed by Syntetos 

and Boylan [10], Levén and Segerstedt [11], Teunter and Duncan [12] or Teunter et al. [13] 

who propose an estimator that is updated in every period rather than only after a demand 

occurrence. Based on the demand variability and the frequency of demand occurrence several 

classification schemes for the sporadic demand are also designed providing practitioners with 

the information which of these methods is the most suitable for a certain demand pattern (see 

e.g. [14-16]). 

      As the exponential smoothing and its modifications for sporadic demand represent 

parametric methods, their performance is affected by an assumption on a standard demand 
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distribution and finding optimal value of smoothing constants in conjunction with the selection 

of an appropriate accuracy metric [17]. On the other hand, nonparametric approaches don't 

make any demand distributional assumptions and therefore they appear to be more flexible 

when dealing with highly irregular demand. An example of such nonparametric method 

represents bootstrapping proposed by Willemain et al. [18]. This approach samples from the 

historical demand data to create an empirical distribution of lead time demand using the demand 

distribution to set the reorder point for a required service level. Similarly to Croston’s method 

bootstrapping becomes a subject to several improvements (see e.g. [19]). However, an essential 

problem with this resampling technique is that the representation of the distributional properties 

of the observed data may become poor due to the demand irregularity which generally leads to 

the significant oversizing of lead time demand [20]. 

      Another nonparametric, data driven and assumptions free approaches represent neural 

networks [21] and also the past stock movement simulation [22]. 

      The main idea of past stock movement simulation is to discretize time in which historical 

demand observations are available and to simulate 3 subsequent and interrelated events in each 

discrete time period. These events include: 

• the arrival of replenishment order if planned, 

• meeting the demand and 

• placing replenishment order if necessary. 

      Whether the simulation run is repeated under the control of a selected inventory policy for 

a sufficient number of combinations of the control variables (e.g. reorder point/replenishment 

order quantity in continuous review, fixed order inventory control policy) reaching the best 

possible solution is certain. On the other hand, in case of increasing total demand, too detailed 

discretization of control variables leading to the all combinations search means excessive 

consumption of computational time and limits the method to be more widely used in practical 

applications [8]. 

      The goal of this paper is to speed up past stock movement simulation in sporadic demand 

inventory control making it more suitable to deal with large scale real life problems. Thus, in 

continuous review, fixed order quantity inventory control policy, we suggest reducing number 

of simulated combinations of reorder point and replenishment order quantity replacing all 

combinations search with the local search. The local search is based on the determination of the 

minimal reorder point coming from the linear regression and the maximal reorder point which 

is obtained with bootstrapping. To prove significant savings of the computational time spent on 

the local search compared to all combinations search we randomly generate demand data with 

level of intermittency ranging from 20 to 70 % of zero demand periods and with nonzero 

demands ranging from 1 to 100 pieces per period. Together with the consumption of 

computational time we are also interested in the comparison of the best reached holding and 

ordering costs ensuring required service level represented by the fill rate. 

      The rest of this paper is organized as follows. In section 2 we provide information on the 

past stock movement simulation, the design of simulation experiments including the random 

generation of intermittent demand data and the description of the outputs coming from the 

simulation experiments. In section 3 we conclude this paper emphasizing our contribution to 

the development of sporadic demand inventory control theory and practice. 

2. PAST STOCK MOVEMENT SIMULATION 

2.1  Model description 

As a starting point for the simulation experiments we use past stock movement simulation 

controlled by the continuous review, fixed order quantity inventory policy where a simulated 
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combination of a reorder point (Signal) and a replenishment order quantity (Q) returns certain 

total holding and ordering costs and a service level in the form of fill rate (see MS Excel VBA 

code in [8], Appendix B). In the first step, we upgrade the model taking into account solely the 

combinations where Q > Signal. Total holding and ordering costs (Nc) are calculated as: 

 𝑁𝑐 = 𝐴𝑣𝑔𝑆𝑡𝑜𝑐𝑘 ∙ 𝑇 ∙ 𝑐 ∙ 𝑛𝑠 + 𝑂 ∙ 𝑛𝑜 (1) 

where AvgStock represents average stock, T the length of simulation, c price of the item, ns 

holding costs, O number of orders and no ordering costs. Fill rate refers to the percentage of 

customer demand that is met by immediate stock availability. No backordering as well as 

multiple orders during the lead time are permitted. On the other hand, partial satisfaction of a 

demand during a period is allowed, in which case the missing quantity is recorded. To prevent 

getting out of stock in the beginning of a simulation the initial stock is calculated using Eq. (2): 

 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑡𝑜𝑐𝑘 =  ∑ 𝑆𝑡
𝐿𝑒𝑎𝑑 𝑡𝑖𝑚𝑒
𝑡=1  (2) 

where t represents a period and St represents a demand in a period. Whereas the default model 

covers all possible combinations of Signal > Q given by the total demand (S) during T (i.e. 
𝑆∙(𝑆−1)

2
 combinations), the consumption of the computational time can easily become 

unacceptable if the total demand is too high. Thus we suggest replacing all combinations search 

(AC) with the local search (LS) in which simulated reorder point range is given by the linear 

regression (LR) and by the bootstrapping (BT). Based on [9] we select LR because we expect 

this method to underestimate average demand during a lead time when dealing with sporadic 

demand and therefore to provide LS with an estimation of the minimal reorder point. Similarly, 

based on [20] we expect BT to overestimate the reorder point providing LS with an estimation 

of the maximal reorder point. Unlike the methods considered to be suitable for sporadic demand 

that are based on exponential smoothing (i.e. Croston and the modifications) both LR and BT 

are not dependent on the optimization of smoothing constants and the selection of an 

appropriate performance metric. Furthermore, LR smoothing and subsequent Signal calculation 

can be realized directly and efficiently in a MS EXCEL sheet using LINEST( ) function and 

Eq. (3): 

  𝑆𝑖𝑔𝑛𝑎𝑙𝐿𝑅 =  𝑆�̅�,𝐿𝑅 ∙ 𝐿𝑒𝑎𝑑 𝑡𝑖𝑚𝑒 +  𝑘 ∙ 𝜎𝑆𝑡,𝐿𝑅
∙ √𝐿𝑒𝑎𝑑 𝑡𝑖𝑚𝑒  (3) 

where 𝑆�̅�,𝐿𝑅 and 𝜎𝑆𝑡,𝐿𝑅
 are mean and standard deviation of demand in each unit time period. 

When assuming that demand during successive unit time periods are independent and 

identically distributed random variables drawn from a normal distribution the safety coefficient 

k for a service level can be easily calculated in Excel using NORMSINV( ) function. The 

calculation of maximal reorder point based on BT is incorporated to the VBA code of the 

original model including For/Next cycles and Rnd( ) function for random selection of a demand 

from timeseries and PERCENTILE( ) function to determine the reorder point (ROP) for a 

certain service level (see Appendix 1). 

2.2  Simulation experiments 

To assess the performance of LS compared to AC we generate 15 scenarios each consisting of 

10.000 timeseries of the length of 50 periods. First, we use RANDBETWEEN( ) function to 

generate non zero demand in a period ranging from 1 – 5; 1 – 25; 1 – 50; 1 – 75 and 1 – 100 pcs. 

Then, in each timeseries we replace randomly selected non zero demands with zeros using MS 

Excel VBA code described in [8], Appendix A. Timeseries in scenarios 1 – 5 contain 20 % zero 

demand periods, timeseries in scenarios 6 – 10 50 % zero demand periods and timeseries in 

scenarios 11 – 15 70 % zero demand periods. We use the Average Demand Interval (ADI), the 

square of the Coefficient of Variation (CV²) to evaluate the demand regularity and variability. 

ADI is calculated as: 
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 𝐴𝐷𝐼 =  
𝑇

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝑑𝑒𝑚𝑎𝑛𝑑 𝑝𝑒𝑟𝑖𝑜𝑑𝑠
 (4) 

      CV² is calculated just for nonzero demand periods as: 

 𝐶𝑉2  =  (
𝐷𝑒𝑚𝑎𝑛𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑑𝑒𝑚𝑎𝑛𝑑
)

2
 (5) 

      Based on ADI and CV² we employ demand classification scheme proposed in [15] to sort 

timeseries in each scenario into 4 groups. These include smooth demand (CV² < 0,49; ADI < 

1,32); erratic demand (CV² ≥ 0,49; ADI < 1,32); intermittent demand (CV² < 0,49; ADI ≥ 1,32) 

and lumpy demand (CV² ≥ 0,49; ADI ≥ 1,32). Demand characteristics for each scenario are 

summarized in the following Table I. 

Table I: Demand characteristics. 

Scenario ADI St,min [pcs] St,max [pcs] S [pcs] CV2 Demand type 

1 1,25 1 5 86 - 154 0,08 - 0,43 Smooth (100 %) 

2 1,25 1 25 350 - 675 0,09 - 0,64 Smooth (99 %); Erratic (1 %) 

3 1,25 1 50 631 - 1359 0,09 - 0,64 Smooth (98 %); Erratic (2 %) 

4 1,25 1 75 966 - 2020 0,12 - 0,75 Smooth (98 %); Erratic (2 %) 

5 1,25 1 100 1230 - 2691 0,11 - 0,75 Smooth (97 %); Erratic (3 %) 

6 2,00 1 5 47 - 101 0,05 - 0,51 Intermittent (100 %); Lumpy (0 %) 

7 2,00 1 25 189 - 470 0,06 - 0,79 Intermittent (97 %); Lumpy (3 %) 

8 2,00 1 50 351 - 874 0,07 - 0,84 Intermittent (95 %); Lumpy (5 %) 

9 2,00 1 75 509 - 1354 0,06 - 0,90 Intermittent (94 %); Lumpy (6 %) 

10 2,00 1 100 694 - 1768  0,07 - 0,89 Intermittent (94 %); Lumpy (6 %) 

11 3,33 1 5 25 - 66 0,03 - 0,60 Intermittent (100 %); Lumpy (0 %) 

12 3,33 1 25 87 - 290 0,04 - 0,90 Intermittent (93 %); Lumpy (7 %) 

13 3,33 1 50 155 - 580 0,04 - 1,02 Intermittent (91 %); Lumpy (9 %) 

14 3,33 1 75 262 - 905 0,05 - 1,33 Intermittent (90 %); Lumpy (10 %) 

15 3,33 1 100 373 - 1219 0,04 - 1,06 Intermittent (90 %); Lumpy (10 %) 

      For each scenario we simulate 4 arrangements of past stock movement simulation 

encompassing AC and LS search for both optimal reorder point and replenishment order 

quantity and also the individual search for optimal replenishment order quantity in situation 

when reorder point comes from LR and BT. To obtain BT reorder point 100 calculations of the 

demand during lead time period are processed for each timeseries. Parameters of the simulation 

used in all experiments are summarized in the following Table II. 

Table II: Parameters of simulation. 

Price 150 €/piece 

Holding costs 28 % % of average stock in €/period 

Ordering costs 35 €/1 order 

Required fill rate 95 % % 

Lead time 3 Periods 

      To carry out simulations MS Excel 16 and a computer with the processor Intel Core i7 – 

2,8 GHz, 16 GB RAM are used. 
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2.3  Simulation results 

Based on the optimal reorder points coming from AC and reorder points set by LR and BT in 

individual search for optimal order quantity we evaluate the potential of LS to capture best 

possible solution (see Table III). As we expect in all scenarios for all timeseries reorder point 

obtained with BT is greater or equal to reorder point coming from LR. Moreover for almost 

100 % of timeseries in all scenarios BT reorder point is greater than best possible solution 

coming from AC search. The small number of timeseries with SignalAC > SignalBT is, in our 

opinion, caused by the low number of calculations of the demand during lead time period in 

BT. Thus we consider BT reorder point to be the reliable estimation of the maximal reorder 

point for LS. 

Table III: Reorder points comparison. 

Scenario SignalBT ≥ SignalLR SignalAC > SignalBT SignalAC < SignalLR 

1 100 % 0 % 11 % 

2 100 % 0 % 51 % 

3 100 % 0 % 60 % 

4 100 % 0 % 63 % 

5 100 % 0 % 64 % 

6 100 % 0,2 % 9 % 

7 100 % 0,1 % 35 % 

8 100 % 0,1 % 42 % 

9 100 % 0,1 % 44 % 

10 100 % 0,2 % 45 % 

11 100 % 0,4 % 12 % 

12 100 % 0,5 % 37 % 

13 100 % 0,5 % 42 % 

14 100 % 0,5 % 44 % 

15 100 % 0,4 % 45 % 

      On the other hand when comparing AC reorder points to these coming from LR there is the 

significant amount of timeseries where SignalAC < SignalLR. In case of scenarios with the 

demand per period ranging from 1 – 5 pcs (i.e. scenarios 1; 6 and 11) this amount fluctuates 

around 10 %. It is getting rapidly worse with increasing demand when in case of scenarios with 

smooth/erratic demand (i.e. scenarios 2 – 5) this amount increases gradually from 51 – 64 % 

and despite a partial improvement for scenarios with intermittent/lumpy demand (i.e. scenarios 

7 – 10 and 12 – 15) which is caused by the increasing number of zeros, this amount still ranges 

from 35 – to 45 %. That means when replacing AC search with LS bounded by LR and BT 

reorder points, there exists the uncertainty of reaching the best possible solution. 

      Based on the best reached holding and ordering costs for 4 simulated arrangements we 

calculate cost differences (∆) for each timeseries in each scenario between LS and AC search, 

between individual search of optimal order quantity with LR reorder point and between 

individual search of optimal order quantity with BT reorder point as: 

 ∆=
𝑁𝑐,𝐿𝑆 𝑜𝑟 𝐿𝑅 𝑜𝑟 𝐵𝑇−𝑁𝑐,𝐴𝐶

𝑁𝑐,𝐴𝐶
∙ 100 % (6) 

      Table IV shows 10 – 100 % percentiles of cost differences for each scenario. 
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Table IV: Cost differences. 

  Cost ∆ - percentile     

Scenario 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 % ROP by No solution 

1 

0 % 0 % 0 % 6 % 12 % 18 % 27 % 39 % 57 % 373 % LR 2 

50 % 60 % 68 % 76 % 83 % 91 % 100 % 111 % 128 % 266 % BT 0 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 63 % LS 0 

2 

0 % 1 % 4 % 7 % 9 % 12 % 16 % 22 % 32 % 247 % LR 24 

68 % 81 % 91 % 101 % 111 % 120 % 130 % 144 % 164 % 308 % BT 0 

0 % 0 % 0 % 0 % 0 % 1 % 4 % 8 % 13 % 54 % LS 0 

3 

0 % 2 % 4 % 7 % 9 % 12 % 16 % 21 % 31 % 241 % LR 30 

71 % 84 % 95 % 104 % 113 % 123 % 134 % 148 % 168 % 369 % BT 0 

0 % 0 % 0 % 0 % 0 % 3 % 5 % 9 % 14 % 69 % LS 0 

4 

0 % 3 % 4 % 7 % 9 % 12 % 16 % 21 % 30 % 190 % LR 14 

71 % 84 % 95 % 105 % 114 % 124 % 136 % 150 % 171 % 315 % BT 0 

0 % 0 % 0 % 0 % 1 % 3 % 6 % 9 % 15 % 75 % LS 0 

5 

0 % 3 % 4 % 7 % 9 % 13 % 16 % 20 % 29 % 223 % LR 28 

70 % 85 % 95 % 104 % 114 % 124 % 134 % 149 % 171 % 373 % BT 0 

0 % 0 % 0 % 0 % 1 % 4 % 6 % 10 % 15 % 69 % LS 0 

6 

0 % 2 % 10 % 18 % 26 % 35 % 46 % 61 % 84 % 381 % LR 777 

31 % 43 % 54 % 63 % 73 % 83 % 94 % 109 % 132 % 294 % BT 13 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 53 % LS 13 

7 

0 % 4 % 8 % 12 % 16 % 22 % 30 % 40 % 57 % 265 % LR 530 

46 % 62 % 74 % 85 % 96 % 108 % 122 % 138 % 165 % 493 % BT 11 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 4 % 11 % 63 % LS 12 

8 

0 % 3 % 7 % 11 % 15 % 21 % 27 % 37 % 54 % 272 % LR 506 

48 % 63 % 75 % 87 % 98 % 110 % 124 % 142 % 170 % 540 % BT 14 

0 % 0 % 0 % 0 % 0 % 0 % 2 % 6 % 12 % 75 % LS 16 

9 

0 % 3 % 7 % 10 % 15 % 20 % 27 % 36 % 52 % 230 % LR 479 

47 % 64 % 75 % 86 % 98 % 110 % 125 % 142 % 169 % 355 % BT 13 

0 % 0 % 0 % 0 % 0 % 0 % 2 % 6 % 12 % 82 % LS 13 

10 

0 % 3 % 7 % 11 % 15 % 20 % 27 % 37 % 54 % 282 % LR 530 

47 % 63 % 75 % 87 % 99 % 112 % 126 % 144 % 171 % 429 % BT 12 

0 % 0 % 0 % 0 % 0 % 0 % 3 % 6 % 13 % 95 % LS 8 

11 

0 % 0 % 8 % 17 % 25 % 35 % 46 % 62 % 86 % 328 % LR 955 

21 % 35 % 47 % 57 % 67 % 79 % 92 % 110 % 138 % 456 % BT 34 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 118 % LS 33 

12 

0 % 3 % 8 % 12 % 18 % 25 % 34 % 46 % 67 % 252 % LR 739 

31 % 47 % 60 % 72 % 84 % 98 % 113 % 134 % 166 % 492 % BT 37 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 6 % 13 % 164 % LS 35 

13 

0 % 3 % 7 % 12 % 18 % 25 % 33 % 45 % 65 % 257 % LR 636 

30 % 47 % 60 % 73 % 86 % 100 % 117 % 137 % 172 % 488 % BT 32 

0 % 0 % 0 % 0 % 0 % 0 % 1 % 7 % 15 % 104 % LS 32 

14 

0 % 3 % 7 % 12 % 18 % 24 % 33 % 45 % 63 % 254 % LR 674 

30 % 46 % 59 % 72 % 85 % 99 % 116 % 137 % 171 % 582 % BT 32 

0 % 0 % 0 % 0 % 0 % 0 % 2 % 7 % 15 % 144 % LS 37 

15 

0 % 3 % 7 % 12 % 17 % 23 % 32 % 43 % 63 % 279 % LR 656 

30 % 46 % 59 % 72 % 85 % 100 % 117 % 138 % 173 % 548 % BT 34 

0 % 0 % 0 % 0 % 0 % 0 % 2 % 7 % 15 % 181 % LS 34 



Huskova, Dyntar: Speeding Up Past Stock Movement Simulation in Sporadic Demand … 

47 

      It can be seen in Table IV that systematic overestimation of BT reorder point in the 

individual optimization of order quantity simulation arrangement leads to the significantly 

higher holding and ordering costs when compared to AC. There is the tendency for BT cost 

differences to decrease in case of growing demand intermittency. Contrarily increasing non-

zero demand quantity and variability leads rather to the cost difference enhancement. On the 

other hand BT reorder point enables past stock movement simulation to almost certainly find a 

feasible solution from required service level point of view (see Table IV, maximal number of 

timeseries with “No solution” for BT is 37 in scenario 12) even if the number of calculations 

of the demand during lead time period executed in BT is very low. It can be further seen in 

Table IV that LR reorder point in the individual optimization of order quantity simulation 

arrangement leads to more accurate solution in term of ∆ than BT. As the demand intermittency 

grows LR tends to underestimate reorder point substantially causing increase in cost differences 

as well as increase in number of timeseries for which no feasible solution meeting required 

service level is found at all. Increase in non-zero demand quantity and variability helps LR 

reorder point simulation arrangement to reduce the cost difference. Finally, the outputs in 

Table IV shows that despite LS simulation arrangement does not guarantee reaching best 

possible solution in most cases it can get very close with maximal 90 % percentile for all 

scenarios equal to 15 %. 

      Together with the best reached holding and ordering costs the consumption of 

computational time is also recorded during the simulation of each scenario in a simulation 

arrangement. Obtained computational times are shown in Table V. It can be seen in Table V 

that computational times for the arrangements with LR and BT reorder points are in all 

simulated scenarios relatively stable ranging from 6 to 7 minutes and from 20 to 26 minutes 

respectively. As these arrangements represent individual optimization of order quantity and 

number of past stock movement simulation runs is consequently quite low we consider the sum 

of these times to be a reasonable estimation of minimal (and fixed) time spent on LS for given 

lead time (i.e. 3), number of calculations of the demand during the lead time in BT (i.e. 100), 

number of timeseries in a scenario (i.e. 10.000) and used hardware and software equipment. 

When compared LS to AC we reach no savings of computational time in scenarios 1; 6; 11 and 

12. In these scenarios AC search lasts from 2 to 17 minutes which is well below of LS’s fixed 

time. 

Table V: Consumption of computational time. 

 Reorder point obtained with AC LR BT LS 

S
ce

n
a

ri
o

 

1 7 7 25 31 

2 110 7 25 38 

3 397 7 25 62 

4 889 7 25 100 

5 1548 7 25 150 

6 4 6 20 29 

7 45 6 24 37 

8 163 7 24 53 

9 356 7 25 74 

10 622 7 23 115 

11 2 6 23 30 

12 17 6 23 32 

13 59 6 26 41 

14 129 6 23 54 

15 226 6 23 74 
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      With increasing total demand AC search becomes more time demanding namely taking 

110 – 1548 minutes in scenarios 2 – 5 compared to LS’s 38 – 150 minutes; 45 – 622 minutes 

in scenarios 7 – 10 compared to LS’s 37 – 115 minutes and 59 – 226 minutes in scenarios 13 – 

15 compared to LS’s 41 – 74 minutes. 

3. CONCLUSION 

The outputs coming from the simulation experiments prove that replacing all combinations 

search with local search bounded by the linear regression minimal reorder point and 

bootstrapping maximal reorder point bring significant savings of the consumption of 

computational time when nonzero demand per period increases from units of pieces to dozens 

of pieces in timeseries containing 20 %, 50 % and 70 % zeros. This time reduction means up to 

50 % of simulated timeseries with such nonzero demand pattern to reach the best possible 

holding and ordering costs and another 40 % of simulated timeseries to reach the maximal 

deterioration of these costs up to 15 %. In fact, to set the minimal and maximal reorder point in 

local search we benefit from the negative features of linear regression (i.e. underestimating 

average demand per period) and bootstrapping (i.e. oversizing the demand during order lead 

time period) when dealing with sporadic demand. On the other hand both linear regression and 

bootstrapping are easy to be programmed, do not require the optimization of smoothing 

constants based on the selection of an appropriate accuracy metric and bring stable and 

relatively low consumption of computational time when used to calculate a reorder point. 

      The past stock simulation modified with local search is now more suitable for a real 

application in inventory control of large portfolios, where intermittency is a common pattern of 

behaviour. These are mainly portfolios of spare parts in the field of maintenance across various 

sectors, not only secondary sector as automotive, aviation or chemistry industry, but for 

example also in the field of healthcare, where it would be possible to manage the supply of non-

standard medicines and medical equipment in this way. Due to the significant savings in 

computational time, it is realistic to include this method in the corporate ERP, whereas the latest 

inventory movements are taken into account with each planning run, and therefore the control 

variables are optimized according to the current state. This should subsequently bring savings 

in the ordering and holding costs compared to the individual application of a parametric 

forecasting method in the reorder point calculation. 

      Speeding up the past stock movement simulation also brings an opportunity to incorporate 

it as an agent into the next generation of discrete event simulations changing the traditional 

offline and standalone modelling tool to interactive and live facility connected to online data 

streams coming for example from a production process [23]. There are numerous benefits that 

such a live simulation could provide to practitioners. The idea of a digital twin offers one 

specific way to frame this benefit as a digital twin links a physical entity with a digital 

representation for the entirety of the physical entity’s lifespan [24] providing for example a 

communication of the live state of a monitored asset, automatic adjustment of a parameter of a 

monitored asset or creating a prediction to guide suggestions that are either automatically 

implemented or sent to a human supervisor [25]. 

      To further increase the ability of local search to reach the best possible holding and ordering 

costs we consider examining a reduction of the minimal reorder point that lies in the removal 

of safety stock. In addition, more effective examining of the search space could bring a 

combination of past stock movement simulation with a metaheuristic such as simulated 

annealing [26] or an evolutionary algorithm [27]. Application of metaheuristics could be 

essential mainly in case of constrained multi item inventory control (see e.g. [28, 29]). Last but 

not least, we are going to examine how a certain level of the discretization of control variables 

affects the efficiency of the past stock movement simulation in term of the consumption of the 
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computational time and the best reached holding and ordering costs. These are the challenges 

for our future work. 
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Appendix 1 

Sub Qsystem_LocalSearch() 

 'Set time of start 

 Sheets("Outputs_LocalSearch").Range("J2").Select 

 ActiveCell.FormulaR1C1 = "=NOW()" 

 Sheets("Outputs_LocalSearch").Range("J2").Select 

 Selection.Copy 

 Sheets("Outputs_LocalSearch").Range("J2").Select 

 Selection.PasteSpecial Paste:=xlPasteValues 

 Application.CutCopyMode = False 

 Dim Demand(50) 

'Set the length of simulation 

 T = 50 

'Import parameters of simulation 

 c = Sheets("Timeseries").Range("B8") 'price 

 ns = Sheets("Timeseries").Range("B9") 'holding costs 

 no = Sheets("Timeseries").Range("B10") 'ordering 

costs 

 SL = Sheets("Timeseries").Range("B11") 'required 

fill rate 

 LT = Sheets("Timeseries").Range("B12") 'lead time 

'For each generated timeseries 

 For xx = 1 To 10000 

'Import timeseries with demand 

  For aa = 1 To T 
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   Demand(aa) = Sheets("Timeseries").Cells(aa + 1, xx 

+ 4) 

  Next 

 'Set total demand and initial stock level 

  S = Sheets("Timeseries").Cells(56, xx + 4) 'total 

demand 

  InitialStock = Sheets("Timeseries").Cells(57, xx + 4) 

  Stock = InitialStock 

 'LinRegr 

  Sheets("Timeseries").Select 

  Sheets("Timeseries").Cells(2, xx + 4).Select 

  Range(Selection, Selection.End(xlDown)).Select 

  Selection.Copy 

  Sheets("Outputs_LocalSearch").Select 

  Range("N2").Select 

  ActiveSheet.Paste 

 'Bootstrapping 

  Range("T5").Select 

  Selection.ClearContents 

  For aa = 1 To 

Sheets("Outputs_LocalSearch").Range("S5") 

   Btrap = 0 

   For bb = 1 To LT 

    Position = Round(1 + Rnd() * 49, 0) 

    Btrap = Btrap + Demand(Position) 

   Next 

   Sheets("Outputs_LocalSearch").Cells(aa + 1, 17) = 

Btrap 

  Next 

  Range("T5").Select 

  ActiveCell.FormulaR1C1 = 

"=ROUNDUP(PERCENTILE(C[-3],RC[1]),0)" 

 'Past stock movement simulation 

  Ncbest = 1000000000 'best reached total holding and 

ordering costs 

  SignalLinRegr = 

Sheets("Outputs_LocalSearch").Range("X2") 

  SignalBtrapping = 

Sheets("Outputs_LocalSearch").Range("T5") 

  'Local search 

  For aa = SignalLinRegr To SignalBtrapping 

  Signal = aa 'Set reorder point 

   For bb = Signal + 1 To S 

    Q = bb 'Set replenishment order quantity 

     For cc = 1 To T 

      'Replenishment order arrival 

      If cc = Ointransit Then 

       Stock = Stock + Q 

       Ointransit = 0 'order in transit 

      End If 

      'Demand satisfaction 

      If Stock >= Demand(cc) Then 

       Stock = Stock - Demand(cc) 

      Else 

       MQ = MQ + (Demand(cc) - Stock) 'missing 

quantity 

       Stock = 0 

      End If 

      'Replenishment order placement 

      If Stock < Signal And Ointransit = 0 Then 

       Ointransit = cc + LT 

       O = O + 1 'number of orders 

      End If 

      'Add inventory level in average stock 

      AvgStock = AvgStock + Stock 

     Next 

    'Calculate total holding and ordering costs 

    If 1 - (MQ / S) >= SL Then 

     AvgStock = AvgStock / T 

     Nc = AvgStock * T * c * ns + O * no 

     'Improve the best reached solution 

     If Nc < Ncbest Then 

      Ncbest = Nc 

      Qbest = Q 

      Signalbest = Signal 

      SLbest = 1 - (MQ / S) 

      AvgStockbest = AvgStock 

      Obest = O 

      MQbest = MQ 

     End If 

    End If 

    'Reset variables of simualtion 

    Stock = InitialStock 

    AvgStock = 0 

    O = 0 

    MQ = 0 

    Ointransit = 0 

   Next 

 Next 

 'Export the best reached solution if there is some 

 If Ncbest < 1000000000 Then 

  Sheets("Outputs_LocalSearch").Cells(xx + 1, 2) = 

Ncbest 

  Sheets("Outputs_LocalSearch").Cells(xx + 1, 3) = 

Qbest 

  Sheets("Outputs_LocalSearch").Cells(xx + 1, 4) = 

Signalbest 

  Sheets("Outputs_LocalSearch").Cells(xx + 1, 5) = 

SLbest 

  Sheets("Outputs_LocalSearch").Cells(xx + 1, 6) = 

AvgStockbest 

  Sheets("Outputs_LocalSearch").Cells(xx + 1, 7) = 

Obest 

  Sheets("Outputs_LocalSearch").Cells(xx + 1, 8) = 

MQbest 

 End If 

 'Reset variables of simualtion 

 S = 0 

 InitialStock = 0 

Next 

 'Set time of finish 

 Sheets("Outputs_LocalSearch").Range("K2").Select 

 ActiveCell.FormulaR1C1 = "=NOW()" 

 Sheets("Outputs_LocalSearch").Range("K2").Select 

 Selection.Copy 

 Sheets("Outputs_LocalSearch").Range("K2").Select 

 Selection.PasteSpecial Paste:=xlPasteValues 

 Application.CutCopyMode = False 

End Sub 


