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Abstract 

This paper is aimed at the development of an alternative combinatorial strategy of reducing searched 

solution space in intermittent demand stock management based on the past stock movement simulation. 

The combinatorial strategy involves an adjustable level of the discretization of control variables that are 

used within a selected inventory control policy. We combine this new strategy with the local search 

employing linear regression and bootstrapping to bound the reorder point and simulate (Q, R) inventory 

control policy using randomly generated data. The data is characteristic with an increasing intermittency 

and a non-zero demand variability. The outputs from simulation experiments show that combining two 

different strategies of reducing searched solution space brings a significant improvement in the trade-

off among the minimal holding and ordering costs, required service level and the consumption of the 

computational time making the past stock movement simulation to be more applicable in extensive real 

life tasks. 
(Received in June 2023, accepted in September 2023. This paper was with the authors 2 weeks for 2 revisions.) 
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1. INTRODUCTION 

Many manufacturing companies consider the management of their inventory of spare parts to 

be a crucial task [1]. From the maintenance point of view spare parts represent a material input 

ensuring a production equipment to keep on running smoothly [2]. Furthermore, spare parts are 

also a subject to the after sales activities covering the whole life cycle of final products [3]. 

Speaking of spare parts inventory, there are capital-intensive industries (i.e. chemical, car 

manufacturing or aerospace) in which to come out of stock is considerably detrimental, both 

from financial and operational perspective [4]. 

      The logistics of spare parts is highly complex mainly because of the demand characteristics 

encompassing a low demand frequency and high variability in the demanded quantities [5]. 

Demand sporadicity and irregularity make especially inventory control of spare parts a very 

challenging task. When employed in an estimating the demand during an order lead time period, 

traditional parametric methods such as exponential smoothing (SES) do not perform well [6]. 

That is why Croston modified SES incorporating the frequency of occurrence of non-zero 

demands in estimating mean and variance of lead time demand and laid the foundation for more 

efficient forecasting and stock control. Throughout the years, many researches were interested 

in improving the performance of Croston’s method (CR). See for instance some interesting 

suggestions presented in [7-10]. Croston’s approach has been also incorporated to the various 

software for the forecasting and stock management of sporadic demand usually adapting a 

demand classification scheme considering an erraticity and an intermittency of the demand to 

select the most suitable modification of Croston‘s approach for a specific demand type (see e.g. 

[11-13]). Because parametric methods such as SES or CR estimates an average demand per 

period and subsequently this estimation becomes an input to the calculation of the demand 

during order lead time there are several drawbacks that one has to be aware of when using this 

kind of approach in inventory control. Firstly, smoothing constants have to be optimized 

requiring to choose a forecast accuracy measure. However, for a selected accuracy metric, a 
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different parametric method can emerge as the most suitable for inventory control of an item 

with a specific demand behaviour [14]. Secondly, some assumptions on a standard demand 

distribution are adopted potentially influencing the estimation of the lead time demand in a 

negative way [15]. 

      Nonparametric methods, on the contrary, do not make this kind of assumption and therefore 

they can be used successfully in situations when the lead time demand is hard to describe with 

help of a theoretical distribution [16]. These methods involve especially bootstrapping, so 

called empirical method, a neural network application and the past stock movement simulation. 

      Classical bootstrapping introduced by Efron [17] and modified for intermittent demand 

applications by Willemain et al. [18] uses a sampling from a demand data coming from the past 

and empirically generates a lead time demand distribution. Based on a scientific study using a 

real data coming from several different industries, Willemain et al. show that their modification 

of original bootstrapping method outperforms single exponential smoothing as well as 

Croston’s method. As in case of Croston’s method several suggestions how to increase the 

efficiency of bootstrapping can be found in scientific literature (see e.g. [19, 20]). Nevertheless, 

a key issue with bootstrapping method is that demand irregularity can cause considerable 

overestimation of lead time demand resulting in a poor performance whether applied in 

intermittent demand inventory management [21]. 

      So called empirical method [22] avoids the sampling which is the essential component of 

bootstrapping and facilitates fast generation of a lead time demand distribution. When tested on 

a real data coming from crude oil processing the empirical method performed better than 

bootstrapping but worse than a parametric method based on normally distributed demand. The 

use of extreme value theory to represent the tail of the lead time demand distribution [23] and 

the incorporation of randomness into lead times [24] are two intriguing adaptations and 

extensions of the empirical method. 

      Currently, applications of neural networks represent another growing scientific stream in 

sporadic demand forecasting and inventory control. Neural networks as an artificial intelligence 

method are broadly applied in the industrial sector to solve diverse tasks [25]. The advantage 

of this method is an ability to recognize a demand behaviour right from the data and capture 

intermittency and irregularity more precisely than other techniques [26]. For readers that are 

further interested in this scientific stream we recommend discovering the work of Guo et al. 

[27] or Shafi et al. [28]. 

      And finally, another nonparametric approach represents the past stock movement 

simulation (PSMS) proposed by Dyntar and Kemrova [29]. In PSMS a simulated period is 

separated into time intervals of the same length and with a certain demanded quantity that 

comes from the past or that can be generated. For each interval there are three possible and 

subsequent actions to be simulated involving a replenishment, a demand satisfaction directly 

from available inventory and an ordering. The ordering is controlled by a selected inventory 

policy employing continuous or periodic review and constant or variable order quantity. The 

advantage of the simulation is that the in-depth discretization of time and the repetitive run of 

the simulation for a different combinations of controlled variables certainly brings better 

performance in term of holding and ordering costs than other parametric and nonparametric 

techniques. Unfortunately, if total demand is too high, the solution space becomes very 

extensive and requires huge amount of computational time to be searched that almost excludes 

the method from possible applications in real life tasks. 

      In this paper we examine how a different level of discretization of reorder point (R) and 

replenishment order quantity (Q) affects both the best reached holding and ordering costs and 

the consumption of the computational time in PSMS of continuous review, fixed order quantity 

inventory control policy [i.e. (Q, R)]. Thus, we gradually set the level of discretization of Q, R 

from 2 (i.e. ACstep2
) to 5 (i.e. ACstep5

) pieces expecting to reduce a solution space that needs to 
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be searched when compared to original all combinations search proposed by Dyntar and 

Kemrova (i.e. ACstep1
). More specifically, if total demand in a time series for an item is equal 

for example to 5 pieces the simulation with ACstep1
 requires checking 10 combinations of Q-R 

(i.e. 5-4; 5-3; 4-3; 5-2; 4-2; 3-2; 5-1; 4-1; 3-1; 2-1) while ACstep2
 reduces this number to 3  

Q-R combinations (i.e. 4-3; 4-1; 2-1) assuming that only Q > R combinations are permitted. We 

test this sort of a combinatorial nature optimization approach in conjunction with our paper 

previously published in the International Journal of Simulation Modelling (see [30]) that uses 

a different strategy to reduce the searched solution space. This strategy entitled the local search 

(LS) involves underestimating R with the help of linear regression and to overestimate R with 

bootstrapping vice versa. Then the simulation runs with the reduced R interval as ACstep1
 

Whether we go back to our example of the item with the total demand equal to 5 pieces 

assuming that linear regression for the time series returns for example R = 1 and bootstrapping 

for example R = 2 the number of simulated Q-R combinations is 7 (i.e. 5-2; 4-2; 3-2; 5-1; 4-1; 

3-1; 2-1). When simulating randomly generated demand data with 20-70 % zero demand 

periods and with demanded quantities per period ranging from 1 to 25, 1 to 50, 1 to 75 and 1 to 

100 pieces, the results published in [30] show that LS brings substantial reduction of 

computational time compared to ACstep1
. On the other hand, the best possible holding and 

ordering costs are reached just for up to 50 % of simulated time series and although for another 

40 % of simulated time series the maximal difference in these costs is up to 15 % there is still a 

significant potential for an improvement. Thus, in this study we are interested in answering 

following research questions: 

• Does a different strategy of reducing the searched solution space (i.e.ACstep2−5
 ) outperform 

LS in term of the consumption of computational time and the best reached holding and 

ordering costs? 

• Does the combination of LS and ACstep2−5
 bring improvements in term of reaching/getting 

closer to the best possible holding and ordering costs reached by ACstep1  while maintaining 

the advantage of significantly lower consumption of computational time? 

      We further organize this paper as follows: In Section 2 we describe PSMS and the 

arrangement of simulation experiments. We also summarize basic features of simulated demand 

data coming from [30] including an elimination of some simulated scenarios. Section 3 contains 

conclusions and the contribution of authors to the development of the field of study. 

2. METHODOLOGY AND DATA 

2.1  Past stock movement simulation 

Initially, we use PSMS of (Q, R) inventory policy described in [30], Appendix 1. We remove 

the calculation of underestimated reorder point with help of regression as well as the sampling 

used in the maximal reorder point calculation with help of bootstrapping. Then we add in 

For/Next cycles to combine Q, R and we also extended these cycles by the option to adjust the 

step size. We use a required fill rate (FR) as the service level indicator describing the ability to 

satisfy the demand right from the available inventory [31-34]. Similarly to [30], in the 

simulation, we continue to avoid back orders in case of insufficient inventory and multiple 

orders in the pipeline for an item. On the contrary, we permit a partial demand satisfaction 

causing a relevant missing quantity becomes the part of an achieved fill rate calculation (AFR). 

      For a simulated combination of Q, R with AFR ≥ FR, the best reached total holding and 

ordering costs (Ct) are for an item calculated as: 

𝐶𝑡 = 𝐴𝐼 ∙ 𝑇 ∙ 𝑝 ∙ 𝑐ℎ + 𝑁𝑜 ∙ 𝑐𝑜 (1) 
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where AI means an item average inventory, T is the duration of simulation, p represents an item 

price, ch holding costs common to all items, No the total number of placed orders for an item 

and finally co represents ordering costs common to all items. As we do not want to commit a 

stock out in the very beginning of the simulation run we set the initial inventory (II) as: 
 

𝐼𝐼 =  ∑ 𝑆𝑡

𝐿𝑇

𝑡=1

 (2) 

where t represents a period, LT an order lead time and St is a demand per period. To calculate 

the consumption of the computational time in the simulation, initial and end times of a 

simulation of a scenario are recorded using predefined MS Excel function NOW(). 

2.2  Simulation experiments and data 

To do simulation experiments we use the same data set as in [30]. This original data consists of 

fifteen scenarios, in each scenario there are ten thousand time series each covering fifty time 

periods. Demand in a period is generated in a two stage process including a random generation 

of non-zero demands ranging uniformly from a minimal value (i.e. St,min) to a maximal value 

(i.e. St,max) and a subsequent replacement of randomly chosen non-zero demand periods with 

zeros according to a required level of intermittency. For more detailed description of the 

demand data generation please see section 2.2 in [30] and Appendix A in [5]. Table I then shows 

demand characteristics of the original data set. 
 

Table I: Basic characteristics of the original demand data set. 

Scenario 
St,min 

[pieces] 
St,max 

[pieces] 
S [pieces] ADI CV 2 Time series demand type 

1 1 5 86 – 154 1.25 0.08 – 0.43 Smooth (100 %) 

2 1 25 350 – 675 1.25 0.09 – 0.64 Smooth (99 %); Erratic (1 %) 

3 1 50 631 - 1 359 1.25 0.09 – 0.64 Smooth (98 %); Erratic (2 %) 

4 1 75 966 - 2 020 1.25 0.12 – 0.75 Smooth (98 %); Erratic (2 %) 

5 1 100 1 230 - 2 691 1.25 0.11 – 0.75 Smooth (97 %); Erratic (3 %) 

6 1 5 47 – 101 2.00 0.05 – 0.51 Intermittent (100 %) 

7 1 25 189 – 470 2.00 0.06 – 0.79 Intermittent (97 %); Lumpy (3 %) 

8 1 50 351 – 874 2.00 0.07 – 0.84 Intermittent (95 %); Lumpy (5 %) 

9 1 75 509 - 1 354 2.00 0.06 – 0.90 Intermittent (94 %); Lumpy (6 %) 

10 1 100 694 - 1 768 2.00 0.07 – 0.89 Intermittent (94 %); Lumpy (6 %) 

11 1 5 25 – 66 3.33 0.03 – 0.60 Intermittent (100 %) 

12 1 25 87 – 290 3.33 0.04 – 0.90 Intermittent (93 %); Lumpy (7 %) 

13 1 50 155 – 580 3.33 0.04 – 1.02 Intermittent (91 %); Lumpy (9 %) 

14 1 75 262 – 905 3.33 0.05 – 1.33 Intermittent (90 %); Lumpy (10 %) 

15 1 100 373 - 1 219 3.33 0.04 – 1.06 Intermittent (90 %); Lumpy (10 %) 

 

      In Table I St > 0 ranges from 1 to 5; 25; 50; 75 or 100 pieces and number of zeros in time 

series is 20 %; 50 % or 70 %. Total demand for a time series (S) is calculated as: 
 

𝑆 =  ∑ 𝑆𝑡

50

𝑡=1

 (3) 

 

      To assess a demand sporadicity for a scenario we calculate Average Demand Interval (ADI) 

as [11]: 
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𝐴𝐷𝐼 =  
50

Number of non zero demand periods
 (4) 

      To assess a non-zero demand variability for a scenario we calculate Coefficient of Variation 

(CV2) as [11]: 

𝐶𝑉2  =  (
Demand standard deviation

Average demand
)

2

 (5) 

      And finally, to decide on a type of demand for a scenario we employ the classification 

scheme proposed in [11]. This scheme is shown in Fig. 1. 
 

 

Figure 1: Sporadic demand classification scheme proposed in [11]. 

 

      Using the results coming from [30] we further eliminate scenarios in which the consumption 

of computational time for ACstep1  ≤ the consumption of computational time for LS (see Table 

II) as it makes no sense to somehow change the discretization level of control variables in this 

case. The eliminated scenarios (i.e. 1; 6; 11 and 12) are highlighted with a red font both in Table 

I and Table II. 
 

Table II: Comparison of computational time of 𝐀𝐂𝐬𝐭𝐞𝐩𝟏
and LS [min] coming from [30]. 

Signal by / Scenario 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

ACstep1
 7 110 397 889 1548 4 45 163 356 622 2 17 59 129 226 

LS 31 38 62 100 150 29 37 53 74 115 30 32 41 54 74 

 

      The remaining scenarios (i.e. scenarios 2-5; 7-10 and 13-15) become the subject to 

simulation experiments with the following parameters, given in Table III. 
 

Table III: Parameters of simulation. 

p 150 € / pc 

ch 28 % from AI in € / period 

co 35 € /order 

FR 95 %  

LT 3 periods 

High

Low

Low High

CV 2  = 0,49

Erratic

Smooth

Lumpy

Intermittent

ADI  = 1,32
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      The remaining scenarios are then simulated in four arrangements differing in a level of the 

discretization of Q, R ranging from 2 to 5 pieces (i.e. ACstep2−5
). All simulation experiments 

are performed on computer with the processor Intel Core i7 – 2,8 GHz, 16 GB RAM. 

2.3  Research results 

Using the values of Ct coming from simulation of a scenario (i.e. 𝐶𝑡,𝐴𝐶step2−5
) and the best 

possible holding and ordering costs (i.e. 𝐶𝑡,𝐴𝐶step1
) coming from [30] a cost difference (∆) for 

an item in a simulated arrangement is calculated as: 
 

∆=
𝐶𝑡,𝐴𝐶step𝑖

− 𝐶𝑡,𝐴𝐶step1

𝐶𝑡,𝐴𝐶step1

∙ 100 % for 𝑖 = 2, 3, 4, 5 (6) 

where i represents the level of the discretization of control variables. Then, for each scenario 

we use MS Excel function PERCENTILE() to calculate 1 to 100 % percentiles of cost 

differences and we put these percentiles together with LS percentiles coming from [30] in Table 

IV to make a comparison. 
 

Table IV: Cost differences ∆ (part 1 of 2). 

  Percentile  

Scenario 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 % R by 

2 

0 % 0 % 0 % 0 % 0 % 1 % 4 % 8 % 13 % 54 % LS 

0 % 0 % 0 % 0 % 3 % 5 % 7 % 10 % 13 % 54 % ACstep2
 

0 % 0 % 4 % 6 % 8 % 10 % 13 % 16 % 21 % 77 % ACstep3
 

0 % 4 % 7 % 9 % 12 % 14 % 18 % 22 % 28 % 73 % ACstep4
 

1 % 6 % 9 % 12 % 15 % 18 % 22 % 26 % 33 % 84 % ACstep5
 

3 

0 % 0 % 0 % 0 % 0 % 3 % 5 % 9 % 14 % 69 % LS 

0 % 0 % 0 % 0 % 2 % 3 % 4 % 5 % 8 % 46 % ACstep2
 

0 % 0 % 2 % 4 % 4 % 6 % 8 % 10 % 13 % 52 % ACstep3
 

0 % 1 % 4 % 5 % 7 % 8 % 11 % 13 % 18 % 60 % ACstep4
 

0 % 3 % 5 % 7 % 9 % 11 % 13 % 17 % 22 % 67 % ACstep5
 

4 

0 % 0 % 0 % 0 % 1 % 3 % 6 % 9 % 15 % 75 % LS 

0 % 0 % 0 % 0 % 1 % 2 % 3 % 4 % 5 % 32 % ACstep2
 

0 % 0 % 1 % 2 % 3 % 4 % 5 % 7 % 9 % 47 % ACstep3
 

0 % 1 % 3 % 4 % 5 % 6 % 7 % 10 % 13 % 46 % ACstep4
 

0 % 3 % 4 % 5 % 7 % 8 % 10 % 12 % 16 % 52 % ACstep5
 

5 

0 % 0 % 0 % 0 % 1 % 4 % 6 % 10 % 15 % 69 % LS 

0 % 0 % 0 % 0 % 1 % 2 % 2 % 3 % 4 % 49 % ACstep2
 

0 % 0 % 0 % 2 % 2 % 3 % 4 % 5 % 7 % 49 % ACstep3
 

0 % 0 % 2 % 3 % 4 % 5 % 6 % 7 % 10 % 49 % ACstep4
 

0 % 2 % 3 % 4 % 5 % 6 % 8 % 10 % 13 % 55 % ACstep5
 

7 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 4 % 11 % 63 % LS 

0 % 0 % 0 % 0 % 3 % 6 % 8 % 11 % 15 % 76 % ACstep2
 

0 % 0 % 3 % 6 % 9 % 11 % 14 % 18 % 25 % 82 % ACstep3
 

0 % 3 % 7 % 10 % 13 % 16 % 20 % 25 % 33 % 108 % ACstep4
 

0 % 6 % 10 % 13 % 16 % 20 % 25 % 30 % 40 % 122 % ACstep5
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Table IV: Cost differences ∆ (part 2 of 2). 

 Percentile  

Scenario 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 % R by 

8 

0 % 0 % 0 % 0 % 0 % 0 % 2 % 6 % 12 % 75 % LS 

0 % 0 % 0 % 0 % 2 % 3 % 4 % 6 % 8 % 59 % ACstep2
 

0 % 0 % 1 % 3 % 5 % 6 % 8 % 10 % 14 % 60 % ACstep3
 

0 % 2 % 4 % 5 % 7 % 9 % 11 % 15 % 20 % 74 % ACstep4
 

0 % 3 % 5 % 7 % 9 % 12 % 15 % 19 % 25 % 92 % ACstep5
 

9 

0 % 0 % 0 % 0 % 0 % 0 % 2 % 6 % 12 % 82 % LS 

0 % 0 % 0 % 0 % 2 % 2 % 3 % 4 % 5 % 51 % ACstep2
 

0 % 0 % 1 % 2 % 3 % 4 % 5 % 7 % 10 % 58 % ACstep3
 

0 % 1 % 3 % 4 % 5 % 6 % 8 % 10 % 14 % 80 % ACstep4
 

0 % 2 % 3 % 5 % 7 % 8 % 10 % 13 % 18 % 84 % ACstep5
 

10 

0 % 0 % 0 % 0 % 0 % 0 % 3 % 6 % 13 % 95 % LS 

0 % 0 % 0 % 0 % 1 % 2 % 2 % 3 % 4 % 58 % ACstep2
 

0 % 0 % 1 % 2 % 2 % 3 % 4 % 5 % 8 % 58 % ACstep3
 

0 % 0 % 2 % 3 % 4 % 5 % 6 % 8 % 11 % 60 % ACstep4
 

0 % 2 % 3 % 4 % 5 % 6 % 8 % 10 % 14 % 68 % ACstep5
 

13 

0 % 0 % 0 % 0 % 0 % 0 % 1 % 7 % 15 % 104 % LS 

0 % 0 % 0 % 0 % 2 % 3 % 4 % 6 % 8 % 68 % ACstep2
 

0 % 0 % 2 % 3 % 5 % 6 % 8 % 10 % 15 % 83 % ACstep3
 

0 % 1 % 4 % 5 % 7 % 9 % 11 % 15 % 22 % 89 % ACstep4
 

0 % 3 % 5 % 7 % 9 % 12 % 16 % 20 % 28 % 103 % ACstep5
 

14 

0 % 0 % 0 % 0 % 0 % 0 % 2 % 7 % 15 % 144 % LS 

0 % 0 % 0 % 0 % 1 % 2 % 3 % 4 % 5 % 46 % ACstep2
 

0 % 0 % 1 % 2 % 3 % 4 % 5 % 7 % 10 % 65 % ACstep3
 

0 % 0 % 2 % 4 % 5 % 6 % 8 % 10 % 14 % 71 % ACstep4
 

0 % 2 % 3 % 5 % 6 % 8 % 10 % 13 % 19 % 81 % ACstep5
 

15 

0 % 0 % 0 % 0 % 0 % 0 % 2 % 7 % 15 % 181 % LS 

0 % 0 % 0 % 0 % 1 % 2 % 2 % 3 % 4 % 59 % ACstep2
 

0 % 0 % 1 % 2 % 2 % 3 % 4 % 5 % 7 % 73 % ACstep3
 

0 % 0 % 2 % 3 % 3 % 4 % 6 % 8 % 11 % 68 % ACstep4
 

0 % 1 % 2 % 4 % 5 % 6 % 8 % 10 % 15 % 70 % ACstep5
 

 

      The results in Table IV show that ACstep2−5
 is not able to reach 𝐶𝑡,𝐴𝐶step1

 in most cases and 

also that this inability rapidly increases and cost differences grow with increasing level of Q, R 

discretization. Furthermore, the results in Table IV show that in most simulated scenarios LS 

outperforms ACstep2−5
 in term of the number of time series for which 𝐶𝑡,𝐴𝐶step1

are reached. For 

example, in the scenario 15, LS reaches the best possible holding and ordering costs in at least 

60 % of simulated time series while ACstep2−5
 performs equally only in 10 to 40 % cases. 

However, in all simulated scenarios for a certain number of time series ACstep2−5
 performs 

better than LS in term of reached ∆. If we go back for example to scenario 15, 80 % percentile 

of cost differences for LS is equal to 7 % while the same percentile is equal to 3 % in case of 

ACstep2
 and 5 % in case of ACstep3

. 
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      We examine this pattern closely and for each simulated scenario we determine number of 

time series where 𝐶𝑡,𝐴𝐶step2−5
< 𝐶𝑡,𝐿𝑆 (see Table V). 

 

Table V: Number of time series where 𝑪𝒕,𝑨𝑪𝐬𝐭𝐞𝐩𝟐−𝟓
< 𝑪𝒕,𝑳𝑺. 

Scenario 𝐀𝐂𝐬𝐭𝐞𝐩𝟐
 𝐀𝐂𝐬𝐭𝐞𝐩𝟑

 𝐀𝐂𝐬𝐭𝐞𝐩𝟒
 𝐀𝐂𝐬𝐭𝐞𝐩𝟓

 

2 26 % 17 % 12 % 9 % 

3 38 % 29 % 23 % 18 % 

4 43 % 35 % 30 % 25 % 

5 48 % 42 % 36 % 32 % 

7 17 % 12 % 8 % 6 % 

8 25 % 20 % 15 % 13 % 

9 29 % 24 % 20 % 17 % 

10 31 % 27 % 23 % 21 % 

13 26 % 21 % 17 % 15 % 

14 29 % 25 % 22 % 19 % 

15 30 % 27 % 25 % 22 % 

 

      The results in Table V show that LS tends to perform better than ACstep2−5
 when the 

intermittency of demand increases (see e.g. Table V, ACstep2
, scenarios 5; 10 and 15). On the 

other hand, for a given number of zero demand periods (i.e. the level of demand intermittency) 

the performance of ACstep2−5
seems to improve with growing variability of non-zero demand 

(see e.g. Table V, ACstep2
, scenarios 2-5). 

      Together with 𝐶𝑡,𝐴𝐶step2−5
we also record the time spent on simulation experiments for each 

simulated arrangement of a scenario. These consumptions and also the computational times of 

LS and ACstep1
coming from [30] are summarized in Table VI. 

 

Table VI: Consumption of computational time [min]. 

Scenario / R by 𝐀𝐂𝐬𝐭𝐞𝐩𝟏
 LS 𝐀𝐂𝐬𝐭𝐞𝐩𝟐

 𝐀𝐂𝐬𝐭𝐞𝐩𝟑
 𝐀𝐂𝐬𝐭𝐞𝐩𝟒

 𝐀𝐂𝐬𝐭𝐞𝐩𝟓
 

2 110 38 28 13 8 6 

3 397 62 103 47 28 19 

4 889 100 227 103 59 38 

5 1 548 150 418 181 103 68 

7 45 37 12 6 4 4 

8 163 53 42 20 12 8 

9 356 74 91 42 24 16 

10 622 115 159 71 41 27 

13 59 41 16 8 5 4 

14 129 54 34 16 10 7 

15 226 74 59 27 16 11 

 

      It can be seen in Table VI that with increasing discretization of Q, R the consumption of 

computational time in ACstep2−5
 rapidly decreases and for most of the simulated arrangements 

of scenarios it is far more favourable than the consumption of computational time of LS. 

      As ACstep2−5
outperforms LS in term of Ct relatively often and its time consumption is 

significantly lower it makes sense to combine these two different strategies together to improve 
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the performance of LS. To demonstrate this potential we select e.g. scenario 5 and for each 

simulated arrangement we instead of 𝐶𝑡,𝐴𝐶step𝑖
use 𝑚𝑖𝑛 (𝐶𝑡,𝐴𝐶step𝑖

, 𝐶𝑡,𝐿𝑆) in calculation of ∆ 

according to Eq. (6). 1 to 100 % percentiles of these modified ∆ values are summarized in Table 

VII together with LS ∆ percentiles coming from Table IV and with the total computational time 

spent on LS + ACstep𝑖
 (i.e. TCT) coming from Table VI. 

 

Table VII: Modified cost differences ∆ based on 𝑚𝑖𝑛 (𝐶𝑡,𝐴𝐶step𝑖
, 𝐶𝑡,𝐿𝑆). 

Percentile    
10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 % R by TCT [min] 

0 % 0 % 0 % 0 % 1 % 4 % 6 % 10 % 15 % 69 % LS 150 

0 % 0 % 0 % 0 % 0 % 0 % 0 % 2 % 3 % 49 % 𝑚𝑖𝑛 (𝐶𝑡,𝐴𝐶step2
, 𝐶𝑡,𝐿𝑆) 568 

0 % 0 % 0 % 0 % 0 % 0 % 2 % 3 % 5 % 49 % 𝑚𝑖𝑛 (𝐶𝑡,𝐴𝐶step3
, 𝐶𝑡,𝐿𝑆)  331 

0 % 0 % 0 % 0 % 0 % 1 % 3 % 4 % 6 % 49 % 𝑚𝑖𝑛 (𝐶𝑡,𝐴𝐶step4
, 𝐶𝑡,𝐿𝑆)  253 

0 % 0 % 0 % 0 % 0 % 2 % 3 % 5 % 8 % 49 % 𝑚𝑖𝑛 (𝐶𝑡,𝐴𝐶step5
, 𝐶𝑡,𝐿𝑆)  218 

 

      The results in Table VII prove that combining LS together with ACstep2−5
 brings significant 

improvements in Ct. While the individual application of LS in scenario 5 leads to the minimal 

holding and ordering costs in up to 40 % of simulated time series and for another 50 % of time 

series there is a maximal difference in these costs up to 15 % a combination of LS and for 

example ACstep1
increases this number up to 70 % and another 20 % of time series differ in the 

minimal possible holding and ordering costs just up to 3 %. There is also a decrease in the 

maximal ∆ for an item from 69 % to 49 %. Of course this ability of LS + ACstep𝑖
is paid with a 

higher computational time compared to the individual LS application but when confronted to 

ACstep1
(i.e. 1548 minutes according to Table VI, scenario 5) TCT savings ranges from 63 to 

86 %. 

3. CONCLUSION 

In this paper we propose an alternative combinatorial strategy of reducing searched solution 

space in intermittent demand stock management based on the past stock movement simulation. 

The combinatorial strategy involves an adjustable level of the discretization of control variables 

that are used within a selected inventory control policy. We combine this new strategy with the 

local search employing linear regression and bootstrapping to bound the reorder point and 

simulate (Q, R) inventory control policy using randomly generated data. The data is 

characteristic with an increasing intermittency and a non-zero demand variability. The outputs 

from simulation experiments show that combining these two different strategies aimed at 

reducing searched solution space brings a significant improvement in the trade-off among the 

minimal holding and ordering costs, required service level and the consumption of the 

computational time making the past stock movement simulation to be more applicable in 

extensive real life tasks dealing with sporadic demand stock management. As both strategies as 

well as the past stock movement simulation are easy to programme and update they can become 

a serious rival to the traditionally used parametric forecasting approaches that perceive a 

demand forecasting and an inventory control to be two separate stages [16]. 

      In our future work we are going to focus on a further evolution of the simulation both in 

term of computational time savings and the minimization of inventory costs. The findings 

coming from [30] show a weak point of the local search to consist in an insufficient 
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underestimating of reorder point by linear regression especially for time series with a relatively 

low intermittency. Thus, we focus either on a replacement of linear regression with a more 

suitable approach or on upgrades in the safety stock calculation. We also see the great potential 

in incorporating demand data aggregation into the simulation. The data aggregation together 

with an adoption of demand classification schemes belong to strategies improving forecasting 

performance of parametric approaches through a reduction of a demand variability and a 

number of zero demand periods [35]. Beside that our potential lies in additional savings of 

computational time through a shortening time series to be simulated as well as through a lead 

time decrease affecting the duration of sampling in bootstrapping that is used in the local search 

to reliably overestimate the reorder point. There is also a space to perform a deeper sensitivity 

analysis concerning how for example different lead times influence the trade-off between 

holding and ordering costs, fill rate and the computational time. 
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